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Abstract

Let J be an open interval and denote by SP the set of all the splines of degree at most n � 1

with simple knots in P; a countably infinite set of points in J; nX2: In this paper, we prove

that there exists a unique best f-approximation to a continuous function in LfðJÞ from SP;

where f : ½0;NÞ/½0;NÞ is a convex function that generalizes the pth-power functions, pX1:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the paper f will always denote any convex function defined on
½0;NÞ; fð0Þ ¼ 0 and fðyÞ40 for y40: Thus, f has a right derivative at any point

and a left derivative at any point in ð0;NÞ; which we will denote by f0
þ and f0

�;

respectively. We also assume that f satisfies Property D2; i.e., there exist y040 and
c40 such that fð2yÞpcfðyÞ for yXy0: Under these conditions,

LfðKÞ :¼ h : h is Lebesgue measurable on K and

Z
K

fðjhjÞoN

� �
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is a linear space, where K is an arbitrary interval. For fðyÞ ¼ fpðyÞ 
 yp; 1ppoN;

we write LpðKÞ instead of Lfp
ðKÞ:

Definition 1.1. Let fALfðKÞ; and let M be a set of functions defined on K : We say

that g0; in M; is a best f-approximation to f from M ifZ
K

fðj f � g0jÞp
Z

K

fðj f � gjÞ for all gAM:

In the case f ¼ fp; 1ppoN; we will say that g0 is a best Lp-approximation to f

from M:

It is well known that if 1opoN; then there exists at most one best Lp-

approximation when approximating from a convex set M: This follows because the
Lp-norm is strictly convex whenever 1opoN: On the other hand, the uniqueness of

best L1-approximation does not follow a general rule and hence this is a question of
main interest in the theory of best approximation. So a best L1-approximation from
a convex set may not be unique (for instance, see the example in [1]). However,
provided f is continuous, uniqueness may be valid when approximating from some
special classes of functions. For instance, Galkin [3] and Strauss [11] have showed
that the problem of best L1-approximation to a continuous function from the space
of polynomial splines with finitely many fixed knots has a unique solution. Recently,
in [2,5] we have given an affirmative answer to the problem of uniqueness of best L1-
approximation to a continuous fAL1ðJ0Þ from the set of n-convex functions, nX2;
J0 being an open, bounded interval.

From now on, J will denote a fixed, open interval ða; bÞ; �NpaobpþN; and
we will write Lf for LfðJÞ: Let P be a set of infinitely many fixed points in J

satisfying P-J ¼ P; i.e., P ¼ fxigiAG; with aoxioxjob whenever ioj; where G is

Z; or N; or �N; and xi-a as i-�N; xj-b as j-þN: For a fixed and arbitrary

integer nX2 we will henceforth denote by SP—its dependence on n is not
indicated—the set of all piecewise polynomial functions g of degree at most n � 1
with simple knots in P (g is ðn � 2Þ times continuously differentiable). Such splines
arise naturally in the study of best f-approximation to an fALf from the set of n-

convex functions (see [5,13]).
Our aim in this paper is to prove the existence and uniqueness of best f-

approximation to a continuous fALf from SP for every f with the conditions

established at the beginning of the paper. In Section 2, we will prove the existence of
best f-approximation for any fALf; and in Section 3, after stating the so-called

Property A, we will show that if SP-Lf satisfies Property A, then there exists a

unique best f-approximation to a continuous fALf from SP: Finally, in Section 4

we will prove that both SP and SP-Lf satisfy Property A.

We remark that the splines with infinitely many knots may be a useful tool in some
applications. So, for instance, observe that if J is an unbounded interval then the
unique best L1-approximation to a continuous function from the set of splines with
finitely many knots has a bounded support necessarily. On the other hand, the
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theory developed in the paper will allow us to show the existence of splines in L1 with
infinitely many knots and with unbounded support (see the example at the end of the
paper).

Finally, we remark that in [2,5] we have proved that a proper subspace of
SP-Lf satisfies Property A. In the present paper, we have used a similar technique

to prove that SP-Lf satisfies Property A. But this similarity is formal only. Most

of the main results in this paper have an independent difficulty and they cannot be
solved as a consequence of the results obtained in [2,5].

2. Existence of a best /-approximation from SP

Theorem 2.1. Let fALf: Then there exists a best f-approximation to f from SP:

Proof. Recall that J ¼ ða; bÞ; where �NpaobpþN: We are assuming here that
P ¼ fxigiAN; i.e., aoxioxjob whenever ioj; and xi-b as i-þN: Let

g :¼ inf

Z
J

fðj f � gjÞ: gASP

� �
:

Note that goN since 0jJ ; the zero function on J; is in SP; and fALf: For each

lAN we take a glASP satisfyingZ
J

fðj f � gl jÞpgþ 1=l: ð1Þ

Note that in the case a ¼ �N each gl vanishes identically on ða; x1: Assume now
a4�N: Then we consider the Banach space ðPn�1½a; x1; jj � jjfÞ; where Pn�1½a; x1
is the set of the polynomials of degree at most n � 1 restricted to ½a; x1; and jj � jjf is

the Luxemburg norm, defined on Lfð½a; x1Þ by

jjgjjf :¼ inf l40 :

Z
½a;x1

f
jgj
l

� �
p1

( )
:

As f is an increasing, convex function, for each lAN we haveZ
½a;x1

f
1

2
gl

����
����

� �
p

Z
½a;x1

f
1

2
j f � gl j þ

1

2
j f j

� �

p
Z
½a;x1

1

2
fðj f � gl jÞ þ

1

2
fðj f jÞ

� �
pM;

where M is a constant, which we assume greater than 1; and the last inequality is
justified because of (1) and the fact that f is in Lf: ThenZ

½a;x1
f

1

2M
jgl j

� �
p

1

M

Z
½a;x1

f
1

2
jgl j

� �
p1;
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where the first inequality is due to the convexity of f and to the fact that fð0Þ ¼ 0:
Thus, jjgl jjfp2M: As Pn�1½a; x1 is a finite-dimensional space, the ball

fhAPn�1½a; x1 : jjhjjfp2Mg

is a compact set. Therefore, there exist a polynomial h0APn�1½a; x1 and a
subsequence fl0gl0AL0

of flglAN such that

jjgl0 � h0jjf-0 as l0-þN:

So, by the equivalence of norms in the space Pn�1½a; x1 we get

fgl0gl0AL0
-h0 uniformly on ða; x1 as l0-þN:

It is obvious that this last result is also valid in the case a ¼ �N; with L0 ¼ N:
Consider now the space Pn�1½x1; x2; endowed first with the Luxemburg norm.

With the same procedure as before we deduce that there exist a subsequence fl1gl1AL1

of fl0gl0AL0
and a spline h1; extension of h0 on ða; x2 and with a simple knot at x1;

such that

fgl1gl1AL1
-h1 uniformly on ða; x2 as l1-þN:

In this way, for any iAN we obtain a subsequence fligliALi
of fli�1gli�1ALi�1

and a

spline hi; extension of hi�1 on ða; xi and with simple knots at the points
x1; x2;y; xi�1; such that

fgligliALi
-hi uniformly on ða;xi as li-þN:

Thus, applying the Cantor diagonal procedure we get a subsequence flglAL of flglAN

and a g0ASP such that

fglglAL-g0 pointwise on J as l-þN:

As f is continuous, applying Fatou’s lemma and taking into account (1) we deduce
that

gp
Z

J

fðj f � g0jÞ ¼
Z

J

lim
l-þN

lAL

fðj f � gl jÞp lim inf
l-þN

lAL

Z
J

fðj f � gl jÞpg:

Hence, it follows that g0 is a best f-approximation to f from SP: If G ¼ �N; or
G ¼ Z; the proof is analogous. &

3. Property A and uniqueness of best /-approximation from SP

The following lemma gives a characterization formula for a best f-approximation
from SP to a function fALf: Its proof is the same as that in [1, Lemma 1]. Observe

that if g0 is a best f-approximation to fALf from SP; then g0 is in SP-Lf; since

fALf; and Lf is a linear space.
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Lemma 3.1. Let fALf: The function g0; in SP-Lf; is a best f-approximation to f

from SP if, and only if, for all hASP-Lf we haveZ
J

Xfh40g hðXf fpg0gf
0
þðj f � g0jÞ �Xf f4g0gf

0
�ðj f � g0jÞÞ

þ
Z

J

Xfho0ghðXf fog0gf
0
�ðj f � g0jÞ �Xf fXg0gf

0
þðj f � g0jÞÞX0;

where XR denotes the characteristic function of the set R:

Property A was introduced by Strauss [12] in an arbitrary finite-dimensional
subspace of CðK0Þ; the set of the continuous functions on K0; where K0 is a compact
interval, to provide a sufficient condition to ensure that there exists a unique best L1-
approximation to a function in CðK0Þ from that subspace (Chapter 4 in [7] is devoted
to study this property). We next establish Property A in any linear subspace S of
CðKÞ; where K is an arbitrary interval. Set

U� :¼ fu�; u� is continuous on K ; ju�j ¼ juj for some uAS\f0gg:

Definition 3.2. We say that S satisfies Property A if to each u�AU� there exists an
h0AS\f0g such that

(a) h0 ¼ 0 a.e. on fu� ¼ 0g; and
(b) h0u�

X0 on J:

The following theorem provides us with a sufficient condition for uniqueness of
best f-approximation to a continuous function in Lf from SP:

Theorem 3.3. Let f be a continuous function in Lf: If the space SP-Lf satisfies

Property A, then there is a unique best f-approximation to f from SP:

Proof. Let f be a continuous function in Lf; and assume that g0 and g1; both in

SP-Lf; are two different best f-approximations to f from SP: Let gl :¼
ð1 � lÞg0 þ lg1; 0olo1: Using the convexity of f we see immediately that for every
l the function gl is also a best f-approximation to f from SP: Using in addition the
continuity of f we can assert that the sets fg0ofog1g and fg1ofog0g are empty.
As a consequence, for 0ol0ol1o1;

f f4gl0
g ¼ f f4gl1

g and f fogl0
g ¼ f fogl1

g:
Let u :¼ gl1

� gl0
: We now define on J the function u� :¼ juj sgnð f � gl0

Þ: So u� is

continuous, because u; f and gl0
are continuous, and u ¼ 0 when f ¼ gl0

: Moreover,

ju�j ¼ juj and uAðSP-LfÞ\f0g: Furthermore,

u� ¼ 0 on f f ¼ gl0
g;

u�
X0 on f f4gl0

g;

u�p0 on f fogl0
g:
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If SP-Lf satisfies Property A, then there exists an h0AðSP-LfÞ\f0g such that

(a) and (b) in Definition 3.2 hold with this function u� and with SP-Lf in the place

of S: Hence,

h0 ¼ 0 a:e: on f f ¼ gl0
g;

h0X0 on f f4gl0
g;

h0p0 on f fogl0
g:

Thus, the characterization formula in Lemma 3.1 fails when g0 is replaced by gl0
;

and h by h0; which contradicts that gl0
is a best f-approximation to f from SP: &

In the following section, we will prove that both SP and SP-Lf indeed satisfy

Property A. When J is a bounded interval it is known that the space of the splines
with finitely many simple knots satisfies Property A [11]. We remark that for nX3 the
difficulty of the proof that SP (SP-Lf) satisfies Property A lies in the existence of

splines in SP (in SP-Lf) with infinitely many isolated zeros. (We show such a

spline in SP-L1 in the example at the end of the paper).

4. Property A in the spaces SP and SP-L/

4.1. Definitions and first results

In the following definitions K denotes an interval, and h is a function in CðKÞ:

Definition 4.1. We say that h has r sign changes if there exists c0oc1o?ocrþ1 in K

satisfying hðciÞhðciþ1Þo0; i ¼ 0; 1;y; r; and there exists no set c00oc01o?oc0r0þ1 in

K satisfying that property with r04r: If hjL; the restriction of h to an interval LDK ;
has r sign changes, then we also say that h has r sign changes on L:

Definition 4.2. For m40; an m-dimensional linear subspace T of CðKÞ is said to be
weak Chebyshev (WT-space) if every function in T has at most m � 1 sign changes.

Definition 4.3. Assume that ða1; b1Þ is the interior set of K ; �Npa1ob1pþN: For
an integer m40 we say that the set F ; CardðFÞ ¼ m � 1; is a (finite) alternating set for h

if F ¼ fzlgm�1
l¼1 ; a1oz1oz2o?ozm�1ob1; and either ð�1Þl

hX0 on ðzl ; zlþ1Þ; l ¼
0; 1;y;m � 1; or ð�1Þl

hp0 on ðzl ; zlþ1Þ; l ¼ 0; 1;y;m � 1; where z0 ¼ a1 and zm ¼
b1: This definition, for a finite set F ; has a natural generalization to a set O ¼ fzlglAZ of

infinitely many isolated points in ða1; b1Þ satisfying zl1ozl2 whenever l1ol2; and zl-a1

as l-�N; zl-b1 as l-þN: Indeed, we say that O is an (infinite) alternating set for

h if either ð�1Þl
hX0 on ðzl ; zlþ1Þ; all lAZ; or ð�1Þl

hp0 on ðzl ; zlþ1Þ; all lAZ:

An m-dimensional WT-subspace T of C½a1; b1; �Noa1ob1oþN; satisfies the
following two properties (see [9] or [10] for the first; [4] or [14], Lemma 4.1, for
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the second):
[SSS] For m41; T contains an ðm � 1Þ-dimensional WT-subspace.
[JKZ] For m40; given a set FCða1; b1Þ; CardðFÞ ¼ m � 1; there exists a function

in T\f0g for which F is an alternating set.

Definition 4.4. An interval LDK is said to be a zero interval of h if CardðLÞ41 and h

vanishes identically on L: The zero interval L is a maximal zero interval of h if L is
not strictly contained in any zero interval of h:

Definition 4.5. A point zAK is a zero of h if hðzÞ ¼ 0; z is an isolated zero of h if there
exists a d40 such that z is the unique zero of h in K-ðz � d; z þ dÞ:

Definition 4.6. Let z be an isolated zero of h in ða1; b1ÞDK : We say that z is a simple zero
of h if h changes sign at z: The point z is a double zero of h if h does not change sign at z:

Definition 4.7. Given an interval LDK ; suppose that hjL; the restriction of h to L;
has finitely many isolated zeros, as well as finitely many sign changes on L: Then

the number of isolated zeros of hjL shall be denoted by ZLðhÞ; and Z 2
L ðhÞ will

denote the number of sign changes of hjL plus twice the number of double zeros of

hjL plus the number of endpoints of L that in addition are isolated zeros of hjL:

The following result follows from Lemma 3(a) in [5].

Lemma 4.8. Let hACðKÞ; where K ¼ ½a1; b1; and let I ½hðxÞ :¼
R x

a1
h; all xA½a1; b1:

Assume that h has at most r sign changes. Then the function c þ I ½h has finitely many

sign changes and finitely many isolated zeros for every constant c: More precisely,

Z2
½a1;b1ðc þ I ½hÞpr þ 1; whence c þ I ½h has at most r þ 1 sign changes.

Definition 4.9. For a fixed and arbitrary integer nX2; we denote by Si;j—its

dependence on n is not indicated—the linear space of the restrictions to ½xi; xj of all

functions in SP: Furthermore, Sþ
i;j (S�

i;j) will denote the linear subspace of Si;j that

consists of all the splines GASi;j satisfying G
ðlÞ
þ ðxiÞ ¼ 0 (GðlÞ

� ðxjÞ ¼ 0; respectively)

for l ¼ 0; 1;y; n � 2: Finally, S0
i;j :¼ Sþ

i;j-S�
i;j:

The sets Si;j; S
þ
i;j ; S

�
i;j and S0

i;j are WT-spaces (cf. [6]), and because of Properties

[SSS] and [JKZ] it can be proved that they also satisfy Property A [12]. We have

dimSi;j ¼ j � i þ n � 1;

dimSþ
i;j ¼ dimS�

i;j ¼ j � i;

dimS0
i;j ¼ maxf0; j � i � n þ 1g:

Let g be a function in SP; or in Si0;j0 ; i0piojpj0: We write Z½i;jðgÞ for Z½xi ;xj ðgÞ;
and mutatis mutandis for Z2

½xi ;xj ðgÞ; as well as for ðxi; xjÞ; ½xi; xjÞ and ðxi; xj:
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Definition 4.10. For hASi;j\f0g we denote by Z%
½i;jðhÞ the number of zeros of h

counting multiplicities, such as in [8, Section 4.7] (zero intervals also count in

Z%
½i;jðhÞ). We have Z½i;jðhÞpZ2

½i;jðhÞpZ%
½i;jðhÞ:

Lemma 4.11. Let g be in SP; or in Si0;j0 ; i0piojpj0; where g does not vanish

identically on ½xi; xj : Then

(a) Z%
½i;jðgÞpj � i þ n � 2:

(b) If the restriction of g to ½xi; xj is in Sþ
i;j ; or in S�

i;j; then Zði;jðgÞpj � i � 1; or

Z½i;jÞðgÞpj � i � 1; respectively.

(c) If the restriction of g to ½xi; xj is in S0
i;j; then Zði;jÞðgÞpj � i � n:

Proof. Item (a) follows from [8, Theorem 4.53]. To prove (b) and (c), suppose that

gj½xi ;xj  is in Sþ
i;j: If xi is an isolated zero of gj½xi ;xj ; then the multiplicity of xi is n � 1:

Otherwise the multiplicity of the zero interval ½xi; xl ; ioloj; is not smaller than n:

Hence, Zði;jðgÞpZ%
½i;jðgÞ � ðn � 1Þ: A similar rule holds when gj½xi ;xj  is in S�

i;j: Now

(b) and (c) follow from (a). &

In order to prove the uniqueness of best f-approximation to a continuous
function in Lf from SP; and according to Theorem 3.3, our aim is now to

demonstrate that the space SP-Lf indeed satisfies Property A. The following

theorem states that both SP and SP-Lf satisfy Property A.

Theorem 4.12. Let u be in SP\f0g; and let u� denote a continuous function defined on J

satisfying ju�j ¼ juj: Then there exists an h0ASP\f0g such that

(a) h0 ¼ 0 a.e. on fu� ¼ 0g;
(b) h0u�

X0 on J; and

(c) If u is in Lf; then so is h0:

It follows from Theorem A, in [2,5], the existence of an h0ASP (for a bounded J)
satisfying (a) and (b) of Theorem 4.12. However, we are not able to determine
whether h0 satisfies (c) as well. So, even in the case where J is bounded, we cannot
make use of the previous existence of that theorem to prove Theorem 4.12, except for
the fact that we will use an analogous technique to that employed in the proof of
Theorem A. In fact, both proofs are based on the construction of appropriate weak
Chebyshev spaces defined in terms of levels (Definition 4.27). But we emphasize that
in this paper the definition of level is not the same as that employed in Theorem A.

Theorem 4.12 will be finally proved in Section 4.3. We first need several results.
We begin with the following two lemmas, which allows us to reduce the number of
cases to consider, depending on the form of G and u: We omit their proofs because
they are completely similar to those of Lemmas 8 and 9 in [5], respectively.
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Lemma 4.13. If Theorem 4.12 holds when G ¼ Z; then it also holds when G ¼ N; or

G ¼ �N:

Lemma 4.14. Theorem 4.12 holds when G ¼ Z and u has at least two maximal zero

intervals.

According to Lemmas 4.13 and 4.14, we henceforth suppose that G ¼ Z and that
the function u; in the statement of Theorem 4.12, has at most one maximal zero
interval. However, the main case to consider is that in which u has no zero interval.
Under this condition the zeros of u are isolated, and therefore the continuous
function u�; defined on J and satisfying ju�j ¼ juj; determines a set of isolated points
in J; namely

O :¼ fzAJ : z is a simple zero of u�g:

For ioj; set

Oði;jÞ :¼ CardðO-ðxi; xjÞÞ; O½i;j :¼ CardðO-½xi; xj Þ;

O½i;jÞ :¼ CardðO-½xi; xjÞÞ; Oði;j :¼ CardðO-ðxi; xj Þ:

Lemma 4.15. Theorem 4.12 holds when G ¼ Z; the function u has no zero interval and

u� is such that Oði;jÞoj � i � n þ 1 for some ioj:

Proof. If Oði;jÞoj � i � n þ 1 for some ioj; then we can use [JKZ] in an ðOði;jÞ þ 1Þ-
dimensional WT-subspace of S0

i;j; after applying [SSS] if Oði;jÞoj � i � n; to show

that there exists a spline H0AS0
i;j\f0g for which O-ðxi; xjÞ is an alternating set.

Therefore, we define an h0 in SP\f0g by

h0ðxÞ :¼
H0ðxÞ; xA½xi; xj ;
0; xAJ\½xi; xj:

�

Then it is clear that either h0 or �h0 satisfies (a)–(c) of Theorem 4.12. &

According to Lemma 4.15, we now establish the following definition.

Definition 4.16. We say that fu;Og is a reference pair if u is in SP without zero
intervals, where P ¼ fxigiAZ; and O is a set of zeros of u satisfying

Oði;jÞXj � i � n þ 1 for any ioj:

Proposition 4.17. Let fu;Og be a reference pair. Then there exist two sequences of

integers fingnAN and f; ngnAN satisfying

?oino?oi2oi1p� nonp; 1o; 2?o; no? ð2Þ
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and the following properties:

fu ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ O-ðJ\ðxi1 ; x; 1

ÞÞ; ð3Þ

Oð j;; nþ1X; nþ1 � j for all nAN and any ; npjo; nþ1;

O½inþ1;iÞXi � inþ1 for all nAN and any inþ1oipin;

(
ð4Þ

Oð; n;; m ¼ ; m � ; n for any nom;

O½im;inÞ ¼ in � im for any nom:

(
ð5Þ

Proof. Applying Lemma 4.11(a) to the function u; we have

Z%
½i;jðuÞpj � i þ n � 2:

Hence, if fu;Og is a reference pair then

j � i � n þ 1pOði;jÞpO½i;jpZ½i;jðuÞpZ%
½i;jðuÞpj � i þ n � 2 ð6Þ

for any ioj: So, in particular, if i ¼ 0 then for every jAN we get

1 � npO½0;j � jpZ½0;jðuÞ � jpn � 2:

Then O-½xj0 ; bÞ ¼ fu ¼ 0g-½xj0 ; bÞ for j0 sufficiently large, since Z½0;jðuÞ �
O½0;jp2n � 3 for all jAN: In addition, since fO½0;j � jgjAN is bounded it is easily

checked that there exists a sequence of integers ðnpÞ; 1o; 2o?o; no?; such that

O½0;; n � ; n ¼ lim sup
j-þN

ðO½0;j � jÞ; all nAN;

fu ¼ 0g-½x; 1
; bÞ ¼ O-½x; 1

; bÞ;

and

O½0;j � jpO½0;; n � ; n for all nAN and j4; 1:

Thus, it is clear that

Oð j;; nþ1 ¼ O½0;; nþ1 � O½0;jX; nþ1 � j for all nAN and any ; npjo; nþ1;

and

Oð; n;; m ¼ O½0;; m � O½0;; n ¼ ; m � ; n for any nom:

Taking now j ¼ 0 in (6), and reasoning in a similar way, we conclude the
proof. &

Definition 4.18. Whenever fu;Og is a reference pair, set

Sn :¼ fGASin;; n : fG ¼ 0g-fxin ; x; n
g+O-fxin ; x; n

gg:
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Note that Sn is a linear space satisfying S0
in;; n

DSnDSin;; n ; with dimSn ¼
; n � in þ n � 1 � CardðO-fxin ; x; n

gÞ: Moreover, Sn is a WT-space (cf. [6]). We will

henceforth write

mn :¼ dimSn ¼ ; n � in þ n � 1 � sðinÞ � sð; nÞ;

where

sðinÞ :¼ CardðO-fxingÞ and sð; nÞ :¼ CardðO-fx; n
gÞ:

Furthermore,

iþn :¼ in þ sðinÞ and ;�n :¼ ; n � sð; nÞ:

The following theorem follows from Theorem 2 in [5]. So we omit the proof, which
is based on properties (4) and (5).

Theorem 4.19. Let fu;Og be a reference pair, and let GAS1: Then there exists a

unique spline g in SP; which we will denote by CðGÞ; such that CðGÞ ¼ G on ½xi1 ; x; 1


and

fCðGÞ ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ+O-ðJ\ðxi1 ; x; 1

ÞÞ: ð7Þ

Moreover, C determines an isomorphism between S1 and CðS1Þ :¼ fCðGÞ:GAS1g:

We are now in a position to prove Theorem 4.12 for the case n ¼ 2: We will later
obtain some results which are valid only if nX3:

Theorem 4.20. Theorem 4.12 holds for the case n ¼ 2:

Proof. According to Lemmas 4.13 and 4.14, we assume G ¼ Z and uASP\f0g has at
most one maximal zero interval.

Suppose first that u has no zero interval. From Lemma 4.15 it is sufficient to
consider the case in which fu;Og is a reference pair. Due to (3) and (5), Zð; n;; nþ1ðuÞ ¼
Oð; n;; nþ1 ¼ ; nþ1 � ; n and Z½inþ1;inÞðuÞ ¼ O½inþ1;inÞ ¼ in � inþ1 for every nX1; and this

implies that the continuous broken line u has one simple zero in ðxj; xjþ1Þ for jX; 1; as

well as one simple zero in ðxi�1; xiÞ for ipi1: Hence, uðx; n
Þa0 and uðxinÞa0 for

every nAN: Thus, S1 ¼ Si1;; 1
and dimS1 ¼ ; 1 � i1 þ 1: After applying [SSS] if

Oði1;; 1Þo; 1 � i1; we use [JKZ] in an ðOði1;; 1Þ þ 1Þ-dimensional WT-subspace of S1 to

obtain an H0AS1\f0g for which O-ðxi1 ; x; 1
Þ is an alternating set. Now apply

Theorem 4.19 to H0 and let h0 :¼ CðH0Þ: By (7) and (3),

fh0 ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ+O-ðJ\ðxi1 ; x; 1

ÞÞ ¼ fu ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ:

Then since h0 is a broken line, it follows that the restriction of h0 to ½x; 1
; bÞ is of the

form c1 u; where jc1j ¼ jH0ðx; 1
Þ=uðx; 1

Þj; and analogously, the restriction of h0 to

ða; xi1  is of the form c01 u; where jc01j ¼ jH0ðxi1Þ=uðxi1Þj: Accordingly, (c) in Theorem

4.12 holds. Furthermore, the only (simple) zeros of h0 in J\ðxi1 ; x; 1
Þ are the points in

O-ðJ\ðxi1 ; x; 1
ÞÞ: Thus, O becomes an alternating set for h0; i.e., (a) and (b) in
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Theorem 4.12 hold as well. So, for n ¼ 2; Theorem 4.12 is true when u has no zero
interval.

Suppose now that uASP\f0g has only one maximal zero interval. Using
considerations of symmetry, we can assume that this zero interval is not ½xj; bÞ for

any jAZ: Without loss of generality, suppose ½x�1; x0 is a zero interval of u and
uðx1Þa0: If CardðO-ðx0; xjÞÞoj � 1 for some j41; then apply Property A in the

ð j � 1Þ-dimensional space S0
0;j to the restrictions to ½x0; xj  of u and u�: In this way

the function which results from this application is trivially extended to J to show that
Theorem 4.12 holds in this case. Thus, consider CardðO-ðx0; xjÞÞ ¼ j � 1 for every

jX1: Then u� and u have the same (simple) zeros in ðx0; bÞ; whence either u� ¼ u or
u� ¼ �u on ½x0; bÞ: Finally, taking h0 ¼ 0 on ða; x0Þ and h0 ¼ u� on ½x0; bÞ; it is easy
to see that h0 satisfies (a)–(c) of Theorem 4.12. &

In what follows, and until the final proof of Theorem 4.12 in Section 4.3, we will
work under the assumption that fu;Og is a reference pair (Definition 4.18). In this
way, we shall deal with the knots xin ; x; n

and the WT-spaces Sn; nAN; and with the

linear map C: Note that
S

N

n¼1 ðxin ; x; n
Þ ¼ J:

Lemma 4.21. For nX3; let GAS1 and assume that for some mAN the restriction of

g :¼ CðGÞ to ðxim ; x; m
Þ has mm � 1 sign changes. Then g has no zero interval, all the

zeros of g have multiplicity one, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

Moreover, gðn�2Þ has a simple zero in each ðxi; xiþ1Þ; all iAZ:

Proof. We first prove that g has no zero interval. If G has a zero interval, then using
the definition of multiplicity of a zero interval (see [8, Section 4.7]) we get
Z�

½im;; m
ðGÞXmm � 1 þ sð; mÞ þ sðimÞ þ n � 1 ¼ ; m � im þ n � 2 þ n � 1; which contra-

dicts Lemma 4.11(a).
Assume now that g has a zero interval ½xj0 ; xj0þ1; j0X; n; and that g has no zero

interval in ½xim ; xj0 : Observe first that j0 ¼ ; n is not possible. Indeed, in this case the

restriction of g to ðxim ; x; m
Þ is in the ð; m � im � sðimÞÞ-dimensional WT-space

S�
im;; m

-Sm: On the other hand, by hypothesis g has mm � 1 sign changes on

ðxim ; x; m
Þ; and

mm � 1 ¼ ; m � im þ n � 2 � sðimÞ � sð; mÞX; m � im � sðimÞ;

since nX3: This is a contradiction. Thus, j04; m necessarily. Let ; n0
AZ satisfying

; n0
4j0: Note first that

O½ j0;; n0
 ¼ Z½ j0;; n0

ðuÞpZ�
½ j0;; n0

ðuÞp; n0
� j0 þ n � 2;
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where the equality is due to (3), and the last inequality follows from Lemma 4.11(a).
Then, taking into account (5),

Oð; m;j0Þ ¼ Oð; m;; n0 
� O½ j0;; n0

X; n0
� ; m � ð; n0

� j0 þ n � 2Þ ¼ j0 � ; m � n þ 2:

Since g has mm � 1 sign changes on ðxim ; x; m
Þ and has no zero interval in ½xim ; xj0 ; it

follows that

Zðim;; mÞðgÞXmm � 1:

Thus,

Z½im;j0ÞðgÞ ¼Z½im;; mðgÞ þ Zð; m;j0ÞðgÞXZðim;; mÞðgÞ þ sðimÞ þ sð; mÞ þ Oð; m;j0Þ

Xmm � 1 þ sðimÞ þ sð; mÞ þ j0 � ; m � n þ 2 ¼ j0 � im;

where (7) is used in the first inequality. So Z½im;j0ÞðgÞXj0 � im; which contradicts

Lemma 4.11(b) since the restriction of g to ½xim ; xj0  is in S�
im;j0 : In consequence, g has

no zero interval in ½x; m
; bÞ: The proof that g has no zero interval in ða; xim  is

completely symmetrical. Therefore, g has no zero interval.
To prove that all the zeros of g have multiplicity one, and that fg ¼

0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ; consider an arbitrary integer n4m: As g has

no zero interval, we get

Z�
½in;; nðgÞXZ½in;; nðgÞ ¼ Z½im;; mðgÞ þ Z½in;imÞðgÞ þ Zð; m;; nðgÞ

Xmm � 1 þ sðimÞ þ sð; mÞ þ O½in;imÞ þ Oð; m;; n

¼ ; m � im þ n � 2 þ im � in þ ; n � ; m ¼ ; n � in þ n � 2; ð8Þ

where (7) is used in the second inequality, and the second equality follows from (5).
If z is a zero of g of multiplicity greater than one, then the first inequality in (8) is

strict for all n4m with the property that zAðxin ; x; n
Þ: Therefore, we obtain a

contradiction since from Lemma 4.11(a), Z�
½in;; n

ðgÞp; n � in þ n � 2: Thus, all the

zeros of g have multiplicity one.
Due to (7), fg ¼ 0g-ðJ\ðxim ; x; m

ÞÞ+O-ðJ\ðxim ; x; m
ÞÞ: Hence, to prove that fg ¼

0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ it is sufficient to see that

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞDO-ðJ\ðxim ; x; m

ÞÞ:

Suppose that there exists a point z0Afg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ such that

z0eO-ðJ\ðxim ; x; m
ÞÞ: Then the second inequality in (8) is strict for all n4m with

the property that z0Aðxin ; x; n
Þ: In this way, we again obtain a contradiction. Thus,

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:
We finally prove that gðn�2Þ has a simple zero in each ðxi; xiþ1Þ; all iAZ: From (8)

and Lemma 4.11(a) it follows that Z�
½in;; n

ðgÞ ¼ Z½in;; nðgÞ ¼ ; n � in þ n � 2 for any
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n4m: Therefore, Z 2
½in;; n

ðgÞ ¼ ; n � in þ n � 2 for any n4m: Then applying n � 2 times

Lemma 4.8 we deduce that gðn�2Þ has ; n � in sign changes on ½xin ; x; n
: This means

that the broken line gðn�2Þ has a simple zero in each ðxi; xiþ1Þ; all iAZ; since n is an
arbitrary integer greater than m: &

Definition 4.22. Let GAS1: We say that g :¼ CðGÞ goes to 0 to the right if g ¼ 0 on
ðxj; bÞ for some jAZ; and g goes to 0 to the left if g ¼ 0 on ða; xiÞ for some iAZ: It is

said that g goes to 0 if g goes to 0 to the right and to the left.

Lemma 4.23. Let g :¼ CðGÞ; where GAS1: Then there holds:

(a) If g does not go to 0 to the right, then g has no zero interval in ½x; 1�1; bÞ: Moreover,

for m1 large enough all the zeros of g in ½x; m1
; bÞ have multiplicity one, and fg ¼

0g-½x; m1
; bÞ ¼ O-½x; m1

; bÞ:
(b) If g does not go to 0 to the left, then g has no zero interval in ða; xi1�1: Moreover,

for m2 large enough all the zeros of g in ða; xim2
 have multiplicity one, and fg ¼

0g-ða; xim2
 ¼ O-ða; xim2

:

Proof. To prove (a) assume that ½xi; xj is a zero interval of g contained in ½x; 1�1; bÞ:
Then we define

g0ðxÞ :¼
gðxÞ; xAða; xiÞ;
0; xA½xi; bÞ:

�

As g does not go to 0 to the right, it is clear that g and g0 are two different extensions
of G satisfying (7), in contradiction with Theorem 4.19. Thus, g has no zero interval
in ½x; 1�1; bÞ: Hence, the zeros of g in ðx; 1�1; bÞ are isolated, and (7) implies

O½; 1;jpZ½; 1;jðgÞ for every j4; 1:

From Lemma 4.11(a),

Z�
½; 1;jðgÞpj � ; 1 þ n � 2 for every j4; 1:

Then since fu;Og is a reference pair, we have

j � ; 1 � n þ 1pO½; 1;jpZ½; 1;jðgÞpZ�
½; 1;jðgÞpj � ; 1 þ n � 2:

Therefore, for every j4; 1;

Z�
½; 1;jðgÞ � Z½; 1;jðgÞp2n � 3 and Z½; 1;jðgÞ � O½; 1;jp2n � 3:

If g has a zero of multiplicity greater than one in ½x; m
; bÞ for all mAN; then

Z�
½; 1;jðgÞ � Z½; 1;jðgÞ-þN as j-þN;

a contradiction. Thus, for n large enough all the zeros of g in ½x; n
; bÞ have multiplicity

one.
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By (7), fg ¼ 0g-½x; 1
; bÞ+O-½x; 1

; bÞ: Hence, if fg ¼ 0g-½x; m
; bÞaO-½x; m

; bÞ for

all mAN then

Z½; 1;jðgÞ � O½; 1;j-þN as j-þN;

which contradicts that Z½; 1;jðgÞ � O½; 1;jp2n � 3 for every j4; 1: Thus, for k large

enough, fg ¼ 0g-½x; k
; bÞ ¼ O-½x; k

; bÞ: Consequently, (a) is proved. The proof of

(b) is similar. &

Lemma 4.24. Let V and G be in S1\f0g: Assume that all the zeros of v :¼ CðVÞ are

isolated and of multiplicity one. Suppose also that for some mAN the restriction of

g :¼ CðGÞ to ðxim ; x; m
Þ has mm � t sign changes, tX1:

(a) If g has a double zero z0Aððxik ; x; k
Þ\OÞ,ðxim ; x; m

Þ for a k4m; then g � ev has at

least mk � t þ 2 sign changes on ðxik ; x; k
Þ for all e sufficiently small and with a

suitable sign.

ðbÞ If g has a double zero z00AO-ððxik ; x; k
Þ\ðxim ; x; m

ÞÞ for a k4m; then g � ev has at

least mk � t þ 1 sign changes on ðxik ; x; k
Þ for all e sufficiently small. If in addition

g ¼ 0 on ½x; k
; bÞ (on ða; xik ), then g � ev has at least mk � t þ 2 sign changes on

ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign.

(c) If g has a simple zero z�Aðxik ; x; k
Þ\ðxim ; x; m

Þ for a k4m and z�eO; then g � ev has

at least mk � t þ 1 sign changes on ðxik ; x; k
Þ for all e sufficiently small. If in

addition g ¼ 0 on ½x; k
; bÞ (on ða; xik ), then g � ev has at least mk � t þ 2 sign

changes on ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign.

(d) If g ¼ 0 on ½x; k
; bÞ (on ða; xik ) for a k4m; then g � ev has at least mk � t þ 1 sign

changes on ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign.

Proof. As v does not go to 0 to the right nor to the left (because it has no zero
interval), the spline g � lv does not go to 0 to the right nor to the left, except for at
most two values of l: Excluding these two possible values of l; we deduce from
Lemma 4.23 that g � lv has no zero interval in J\ðxi1 ; x; 1

Þ: Furthermore, g � lv may

have zero intervals in ðxi1 ; x; 1
Þ only for a finite number of values of l: As a

consequence, for all e sufficiently small g � ev has no zero interval. Hence for such all
e; each sign change of g � ev is due to a simple zero of g � ev: So, taking into account
that all the zeros of v are isolated and of multiplicity one, and that by (7), vðzÞ ¼ 0 if
zAO-ðJ\ðxi1 ; x; 1

ÞÞ; for a k4m the following facts can be easily proved:

(I) The mm � t sign changes of g on ðxim ; x; m
Þ produce at least mm � t simple zeros

of g � ev on ðxim ; x; m
Þ for all e sufficiently small.

(II) Each simple zero z of g in ðxik ; x; k
Þ\ðxim ; x; m

Þ produces, for all e sufficiently

small, at least one simple zero of g � ev; say zðeÞ; with zðeÞ-z as e-0:
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(III) Each double zero z0 of g in ððxik ; x; k
Þ\OÞ,ðxim ;x; m

Þ produces, for all e
sufficiently small (and with a suitable sign if vðz0Þa0), two simple zeros of
g � ev; say z01ðeÞ and z02ðeÞ; such that z01ðeÞ-z0 and z02ðeÞ-z0 as e-0:

(IV) Each double zero z00 of g in O-ððxik ;x; k
Þ\ðxim ; x; m

ÞÞ produces, for all e
sufficiently small, two simple zeros of g � ev; say z001ðeÞ ¼ z00 and z002ðeÞ; such that

z002ðeÞ-z00 as e-0:
(V) Each nonisolated zero of g in O-ððxik ; x; k

Þ\ðxim ; x; m
ÞÞ is a simple zero of g � ev

for every ea0:
(VI) For all e sufficiently small (and possibly with a suitable sign if III) applies), all

the simple zeros of g � ev obtained in (I)–(V) are different.

Applying (5), for every k4m we obtain

Oðik;im ¼ im � ik � sðikÞ þ sðimÞ and O½; m;; kÞ ¼ ; k � ; m � sð; kÞ þ sð; mÞ:

Therefore,

Oðik;im þ O½; m;; kÞ ¼ mk � mm: ð9Þ

Suppose that z0 is a double zero of g and z0Aððxik ; x; k
Þ\OÞ,ðxim ; x; m

Þ: From (7),

g ¼ 0 in O-ððxik ;x; k
Þ\ðxim ; x; m

ÞÞ: Then using (9) and (I)–(VI) we deduce that g � ev
has at least mk � t þ 2 sign changes on ðxik ; x; k

Þ for all e sufficiently small and with a

suitable sign. This proves (a).
Assume now that z00AO-ððxik ; x; k

Þ\ðxim ; x; m
ÞÞ is a double zero of g: Then taking

into account again that g ¼ 0 in O-ððxik ; x; k
Þ\ðxim ;x; m

ÞÞ; and using (9), ðIÞ; (II),

(IV)–(VI) we see that g � ev has at least mk � t þ 1 sign changes on ðxik ; x; k
Þ for all e

sufficiently small. Suppose that in addition g ¼ 0 on ½x; k
; bÞ: Then there exists

jp; k such that g ¼ 0 on ½xj; bÞ and gðxj�1Þa0: Therefore, apart from the simple

zeros of g � ev mentioned in (I), (II), (IV) and (V), g � ev has another simple zero in
ðxj�1; xjÞ for all e sufficiently small and with a suitable sign. An analogous argument

applies when g ¼ 0 on ða;xik : This proves (b). The proofs of (c) and (d) are

similar. &

4.2. Levels in CðS1Þ: The WT-spaces S
r;t
1 and Tt

c

Recall that we are assuming that fu;Og is a reference pair, where O ¼ fzlglAZ;
with aoziozjob whenever ioj; and zi-a as i-�N; zj-b as j-þN:

Remark 4.25. Let GAS1: Because of Lemma 4.23(a), if g :¼ CðGÞ does not go to 0
to the right then there exists j0AZ such that all the zeros of g in ½zj0 ; bÞ are isolated and

of multiplicity one, and in addition fg ¼ 0g-½zj0 ; bÞ ¼ O-½zj0 ; bÞ: For all lAZ; %zl will

henceforth denote an arbitrary point in ðzl ; zlþ1Þ: Accordingly, if g does not go to 0
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to the right then there exists j0AZ such that gð%zjÞgð%zjþ1Þo0 for every jXj0:
Analogously, using now Lemma 4.23(b) we see that if g does not go to 0 to the left
then there exists i0AZ such that gð%ziÞgð%zi�1Þo0 for every ipi0:

The following theorem will play a decisive role in the proof of Theorem 4.12.

Theorem 4.26. Let g1 :¼ CðG1Þ; g2 :¼ CðG2Þ; where G1;G2AS1:

(a) Assume g2 does not go to 0 to the right. Then there exists

lright :¼ lim
xmb
xeO

g1ðxÞ
g2ðxÞ

; �NplrightpþN:

(b) Assume g2 does not go to 0 to the left. Then there exists

lleft :¼ lim
xka
xeO

g1ðxÞ
g2ðxÞ

; �NplleftpþN:

Proof. To prove (a) assume that g2 � yg1 does not go to 0 to the right for any
yAR\f0g: Otherwise lright ¼ 1=y for some y; and therefore (a) is obvious. Then since

both g2 and g2 � yg1 do not go to 0 to the right, using Remark 4.25 we deduce that
there exists j0ðyÞAZ such that for every jXj0ðyÞ;

g2ð%zjÞg2ð%zjþ1Þo0 and ½g2ð%zjÞ � yg1ð%zjÞ½g2ð%zjþ1Þ � yg1ð%zjþ1Þo0:

Hence, either

0o
g2ðxÞ � yg1ðxÞ

g2ðxÞ
¼ 1 � yg1ðxÞ

g2ðxÞ
for every xAðzj0ðyÞ; bÞ\O

or

04
g2ðxÞ � yg1ðxÞ

g2ðxÞ
¼ 1 � yg1ðxÞ

g2ðxÞ
for every xAðzj0ðyÞ; bÞ\O:

Suppose

lim inf
xmb
xeO

g1ðxÞ
g2ðxÞ

ogo lim sup
xmb
xeO

g1ðxÞ
g2ðxÞ

; ga0: ð10Þ

We have just proven that there exists j0ð1=gÞAZ such that either

g1ðxÞ
gg2ðxÞ

o1 for every xAðzj0ð1=gÞ; bÞ\O

or

g1ðxÞ
gg2ðxÞ

41 for every xAðzj0ð1=gÞ; bÞ\O:
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In either case (10) is contradicted. Thus,

lim inf
xmb
xeO

g1ðxÞ
g2ðxÞ

¼ lim sup
xmb
xeO

g1ðxÞ
g2ðxÞ

;

and hence the limit exists. So (a) is proved. The proof of (b) is similar. &

Definition 4.27. Let G1; G2AS1: We say that g1 :¼ CðG1Þ and g2 :¼ CðG2Þ have the
same right level (same left level) if either g1 and g2 go to 0 to the right (to the left) or
g2 does not go to 0 to the right (to the left) and

0o lim
xmb
xeO

jg1ðxÞj
jg2ðxÞj

oN 0o lim
xma
xeO

jg1ðxÞj
jg2ðxÞj

oN

0
@

1
A:

The functions g1 and g2 have the same level if they have the same right and left
levels. Finally, we say that the function g1 has a lower right level than g2 (lower left

level than g2) if g2 does not go to 0 to the right (to the left) and

lim
xmb
xeO

g1ðxÞ
g2ðxÞ

¼ 0 lim
xmb
xeO

g1ðxÞ
g2ðxÞ

¼ 0

0
@

1
A:

Lemma 4.28. Let G1; G2AS1; and let g1 :¼ CðG1Þ; g2 :¼ CðG2Þ:

(a) Assume that for some mAN and for all e sufficiently small,2 g1; g2; and g1 � eg2

have no double zero in ½x; m
; bÞ; and

fg1 ¼ 0g-½x; m
; bÞ ¼ fg2 ¼ 0g-½x; m

; bÞ

¼ fg1 � eg2 ¼ 0g-½x; m
; bÞ ¼ O-½x; m

; bÞ:

Then g1 does not have a lower right level than g2:
(b) Assume that for some mAN and for all e sufficiently small, g1; g2 and g1 � e2g2

have no double zero in ða; xim ; and

fg1 ¼ 0g-ða; xim  ¼ fg2 ¼ 0g-ða; xim 

¼ fg1 � e2g2 ¼ 0g-ða; xim  ¼ O-ða; xim :

Then g1 does not have a lower left level than g2:
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(c) Assume that for some mAN and for all e sufficiently small, g1; g2 and g1 � eg2 have

no double zero in J\ðxim ; x; m
Þ; and

fg1 ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ fg2 ¼ 0g-ðJ\ðxim ; x; m

ÞÞ

¼ fg1 � eg2 ¼ 0g-ðJ\ðxim ; x; m
ÞÞ

¼O-ðJ\ðxim ; x; m
ÞÞ:

Then g1 does not have a lower right or left level than g2:

Proof. Recall that O ¼ fzjgjAZ and that for all jAZ; %zj denotes an arbitrary point in

ðzj; zjþ1Þ: To prove (a), consider a zj0A½x; m
; bÞ: Then we see that for all e sufficiently

small, g1; g2; and g1 � eg2 have no double zero in ½zj0 ; bÞ; and

fg1 ¼ 0g-½zj0 ; bÞ ¼ fg2 ¼ 0g-½zj0 ; bÞ ¼ fg1 � eg2 ¼ 0g-½zj0 ; bÞ ¼ O-½zj0 ; bÞ:

Therefore, for all jXj0 and for all e sufficiently small we get

(i) g1ð%zjÞg1ð%zjþ1Þo0;

(ii) g2ð%zjÞg2ð%zjþ1Þo0; and

(iii) ½g1ð%zjÞ � eg2ð%zjÞ½g1ð%zjþ1Þ � eg2ð%zjþ1Þo0:

Take now an e1 so that (iii) is valid with e ¼ e1; and in addition

e1g1g240 and jg1j4je1g2j on ðzj0 ; zj0þ1Þ: ð11Þ

Then using (i), (ii) and the first inequality in (11), we deduce that

e1g1g240 on ðzj0 ; bÞ\O:

From (11) it is easy to check that g1ðg1 � e1g2Þ40 on ðzj0 ; zj0þ1Þ: Hence, using (i), and

(iii) with e ¼ e1; we obtain

g1ðg1 � e1g2Þ40 on ðzj0 ; bÞ\O:

Finally, as

e1g1g240 and g1ðg1 � e1g2Þ40 on ðzj0 ; bÞ\O;

it is easy to see that jg1j4je1g2j on ðzj0 ; bÞ\O; whence

lim
xmb
xeO

jg1ðxÞj
jg2ðxÞj

40:

Thus, g1 does not have a lower right level than g2: This proves (a). The proof of (b) is
similar.

To prove (c), note that the hypotheses of (a) and (b) hold simultaneously, and thus
g1 does not have a lower right or left level than g2: &
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Remark 4.29. We now construct a suitable basis for S1: We choose m1 � 1 points

fykgm1�1
k¼1 in the interval ðxiþ

1
; x;�

1
Þ in the following way. Take n points in ðx�1; x1Þ and

one point in each of the components ðxi; xiþ1Þ; i ¼ iþ1 ; i
þ
1 þ 1;y;�3;�2 and i ¼

1; 2;y; ;�1 � 2; ;�1 � 1 in such a manner that y1oy2o?oym1�1: We shall use these

points, together with a set of replacement points y0
1oy0

2oyoy0
m1�1 to obtain the

splines in the basis for S1; where fy0
kg

m1�1
k¼1 -fykgm1�1

k¼1 ¼ | and each y0
k is taken in the

same component in which yk is. Using Property [JKZ] in the m1-dimensional WT-

space S1 we obtain a spline V0AS1\f0g for which fykgm1�1
k¼1 is an alternating set.

Note that by the location of the points fykgm1�1
k¼1 ; if V0 has a zero interval then V0

vanishes identically. Thus, V0 has no zero interval. Applying now Lemma 4.11(a) to

the restriction of V0 to ðxiþ
1
; x;�

1
Þ; which is in Siþ

1
;;�

1
; we see that fykgm1�1

k¼1 are the only

zeros (of multiplicity 1) of V0 in ½xiþ
1
; x;�

1
: We now extend fV0g to a basis for S1:

For each l ¼ 1; 2;y;m1 � 1; consider the set fyl
kg

m1�1
k¼1 ; with yl

k ¼ yk for kal and

yl
l ¼ y0

l : From this set, Vl is obtained in the same way as V0; and therefore it has the

same properties; Vl has the only zeros (of multiplicity 1) yl
1; yl

2;y; yl
m1�1 in ½xiþ

1
; x;�

1
:

It is thus easy to see that the set fV0;V1;y;Vm1�1g is linearly independent and it is
therefore a basis for S1: We say that this basis is obtained by the replacement method

based on the set fykgm1�1
k¼1 ; with the replacement points y0

1; y0
2;y; y0

m1�1: For l ¼
0; 1;y;m1 � 1; every Vl has m1 � 1 sign changes and has no zero interval. Let
vl :¼ CðVlÞ; l ¼ 0; 1;y;m1 � 1: Then fv0; v1;y; vm1�1g is a basis for CðS1Þ: In the

following theorem we shall use the splines fvlgm1�1
l¼0 ; as well as the points fyl

kg
m�1
k¼1 for

each l ¼ 1; 2;y;m1 � 1:

Theorems 4.30 and 4.36 are the key to constructing appropriate WT-subspaces of
S1: In one of these subspaces we will find an H0 with the property that h0 :¼ CðH0Þ
makes Theorem 4.12 to hold. Theorem 4.30 establishes five properties for, in

particular, the space S1 ð¼ S0;0
1 Þ: We will prove in Lemma 4.33 that S1 indeed

satisfies these properties.

Theorem 4.30. Assume that S0;t
1 is an ðm1 � tÞ-dimensional WT-subspace of S1;

0pton � 1 � sð; 1Þ; with a basis fV
0;t
0 ;V

0;t
1 ;y;V

0;t
m1�t�1g; and such that the following

properties hold:

ða1Þ For each l ¼ 0; 1;y;m1 � t� 1; the spline V
0;t
l changes sign at the m1 � t� 1

points yl
1; yl

2;y; yl
m1�t�1; whence it has m1 � t� 1 sign changes. Moreover, for

each l ¼ 0; 1;y;m1 � t� 1; v
0;t
l :¼ CðV0;t

l Þ is proportional to vl on ða; x;�
1
�t;

and v
0;t
l has no zero interval in ða; x; 1

:
ða2Þ Let GAS0;t

1 : Then for every nAN; the restriction of g :¼ CðGÞ to ðxin ; x; n
Þ has at

most mn � t� 1 sign changes.
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ða3Þ Let GAS0;t
1 and assume that for some mAN; the restriction of g ð¼ CðGÞÞ to

ðxim ; x; m
Þ has mm � t� 2 sign changes. If g does not go to 0 to the right nor to the

left and the broken line gðn�2Þ has no zero in some interval ½xi1 ; xi1þ1; then g has no

double zero, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

ða4Þ Let GAS0;t
1 and assume that for some mAN; the restriction of g ð¼ CðGÞÞ to

ðxim ; x; m
Þ has mm � t� 1 sign changes. Suppose also that g does not go to 0 to the

right nor to the left. Then g has no double zero, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

Moreover, gðn�2Þ has at least a zero in ½xi; xiþ1; all iAZ:

ða5Þ For each l ¼ 0; 1;y;m1 � t� 1; if v0;t
l ð¼ CðV 0;t

l ÞÞ does not go to 0 to the right,

then v0;t
l has no zero interval, all the zeros of v0;t

l have multiplicity one, and

fv0;t
l ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

If v
0;t
0 does not go to 0 to the right, then

(i) The set S0;tþ1
1 :¼ fGAS0;t

1 : CðGÞ has a lower right level than v0;t
0 g is an

ðm1 � t� 1Þ-dimensional WT-subspace of S0;t
1 :

(ii) There exists a basis fV 0;tþ1
0 ;V 0;tþ1

1 ;y;V 0;tþ1
m1�t�2g for S0;tþ1

1 such that S0;tþ1
1 and

this basis fulfill the analogs of ða1Þ–ða5Þ with tþ 1 in place of t; say ða01Þ–ða05Þ;
respectively.

Before proving Theorem 4.30, we need to show some results.

Proposition 4.31. Let S0;t
1 be an ðm1 � tÞ-dimensional WT-subspace of S1;

0ptpn � 1 � sð; 1Þ; with a basis fV
0;t
0 ;V

0;t
1 ;y;V

0;t
m1�t�1g: Assume that S0;t

1 and

this basis satisfy ða1Þ of Theorem 4.30, and let G0AS0;t
1 : If ½xi1 ; xj0  is a zero interval of

G0; ;
�
1 � tpj0p; 1; then CðG0Þ vanishes identically on ½xi1 ; bÞ:

Proof. Let G0AS0;t
1 and assume that ½xi1 ; xj0  is a zero interval of G0; ;

�
1 � tpj0p; 1:

We claim that G0 ¼ 0 necessarily. Suppose, contrary to our claim, that ½xi1 ; xi0  is a

zero interval of G0; with ;�1 � tpi0o; 1 and G0ðxi0þ1Þa0: On the other hand, it

follows from ða1Þ that V0;t
0 has simple zeros at the points y1; y2;y; ym1�t�1; which

are in ðxi1 ; x;�
1
�tÞDðxi1 ; xi0Þ: Then G0 � eV0;t

0 is in S0;t
1 and it has at least m1 � t� 1

sign changes on ðxi1 ; xi0Þ for all ea0: Moreover, since G0ðxi0þ1Þa0; it is easy to see

that we can choose e0 sufficiently small and with a suitable sign in such a way that

G0 � e0V0;t
0 has another sign change on ðxi0 ; xi0þ1Þ: Therefore, G0 � e0V0;t

0 has at least
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m1 � t sign changes, which contradicts that G0 � e0V 0;t
0 is in the ðm1 � tÞ-

dimensional WT-space S0;t
1 : Thus, G0 ¼ 0 and so the claim is proved. Then it

follows from Theorem 4.19 that CðG0Þ vanishes identically on ½xi1 ; bÞ: &

Lemma 4.32. Let S0;t
1 be an ðm1 � tÞ-dimensional WT-subspace of S1; 0ptpn �

1 � sð; 1Þ; with a basis fV
0;t
0 ;V

0;t
1 ;y;V

0;t
m1�t�1g: If S0;t

1 and this basis satisfy ða1Þ–ða5Þ
of Theorem 4.30, then there holds

(a) The splines v
0;t
l ð¼ CðV 0;t

l Þ; l ¼ 0; 1;y;m1 � t� 1; have the same right level.

Hence, v
0;t
0 does not have a lower right level than CðGÞ for any GAS0;t

1 :

(b) Let G1AS0;t
1 and suppose that g1 :¼ CðG1Þ has mm � t� 1 sign changes on

ðxim ; x; m
Þ for some mAN: Then g1 has the same right level as v0;t

0 :

(c) Let G0AS0;t
1 \f0g; and suppose that ½xi1 ; x;�

1
�t�1 is a zero interval of G0: Then

CðG0Þ has the same right level as v
0;t
0 :

To prove (a) and (b) we shall use the following claim.

Claim 1. Let G1AS0;t
1 with mm � t� 1 sign changes on ðxim ; x; m

Þ for some mAN: If v
0;t
l0

ð¼ CðV 0;t
l0 ÞÞ does not go to 0 to the right for some l0; 0pl0pm1 � t� 1; then g1 :¼

CðG1Þ does not go to 0 to the right nor to the left.

To prove the claim, suppose v
0;t
l0 does not go to 0 to the right. So taking into account

ða5Þ we can use Lemma 4.24 with G ¼ G1; V ¼ V
0;t
l0 and t ¼ tþ 1: Assume now that

g1 goes to 0 to the right. Then using (d) in Lemma 4.24 we deduce that there exists a

k4m and large enough for which g1 � ev0;t
l0 has at least mk � t sign changes on

ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign. But this is in

contradiction with ða2Þ applied to G1 � eV 0;t
l0 AS0;t

1 : The same argument proceeds if

g1 goes to 0 to the left. Therefore, the claim is proved.

Observe that, due to ða1Þ; for l ¼ 0; 1;y;m1 � t� 1 the spline V
0;t
l satisfies the

hypothesis on G1 in Claim 1. Hence any result we get for G1 (g1) is also valid for each

V
0;t
l ðv0;t

l Þ: For instance, we deduce that v
0;t
l goes to 0 to the right if and only if v

0;t
0

goes to 0 to the right. If v
0;t
l goes to 0 to the right for every l ¼ 0; 1;y;m1 � t� 1;

then it is clear that any G in S0;t
1 satisfies that CðGÞ also goes to 0 to the right, and

therefore CðGÞ has the same right level as v
0;t
0 : Thus (a) and (b) are true in this case.

Assume now that v0;t
l does not go to 0 to the right for any l ¼ 0; 1;y;m1 � t� 1:

Let G1 be in S0;t
1 with mm � t� 1 sign changes on ðxim ; x; m

Þ for some mAN: Then

Claim 1 implies that g1 ð¼ CðG1ÞÞ does not go to 0 to the right nor to the left.

Accordingly, for every l ¼ 0; 1;y;m1 � t� 1; each of the splines G1 and V0;t
l
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satisfies the hypotheses of ða4Þ; and it is not difficult to see that also G1 � eV0;t
l

satisfies the hypotheses of ða4Þ for all e sufficiently small. Hence, we deduce that g1;

v0;t
l ; and g1 � ev0;t

l for all e sufficiently small, have no double zeros and

fg1 ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ fv0;t

l ¼ 0g-ðJ\ðxim ; x; m
ÞÞ

¼ fg1 � ev0;t
l ¼ 0g-ðJ\ðxim ; x; m

ÞÞ ¼ O-ðJ\ðxim ; x; m
ÞÞ:

Therefore, Lemma 4.28(c) shows the following assertion: g1 does not have a lower

right (or left) level than v
0;t
l ; l ¼ 0; 1;y;m1 � t� 1: In particular it follows that for

l ¼ 0; 1;y;m1 � t� 1; the splines v
0;t
l have the same right (and left) level. Hence, it

is easy to see that v0;t
0 does not have a lower right (or left) level than CðGÞ for any

GAS0;t
1 : This proves (a). Now both (a) and the above assertion prove (b).

To prove (c), let G0AS0;t
1 \f0g; and suppose that ½xi1 ; x�

; 1
� t� 1 is a zero interval

of G0: Note that from (a) it is sufficient to show that g0 :¼ CðG0Þ does not have a

lower right level than v0;t
0 : This is immediate if v0;t

0 goes to 0 to the right. So assume

that v
0;t
0 does not go to 0 to the right. Under this assumption, we first demonstrate

the following two claims.

Claim 2. For all e sufficiently small, g0 � ev0;t
0 has no double zero, and

fg0 � ev0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

To prove the claim, note first that g0 � ev0;t
0 does not go to 0 to the right nor to the

left for all e sufficiently small because v0;t
0 does not go to 0 to the right nor to the left.

From ða1Þ and the location of the points y1; y2;y; ym1�t�1; V 0;t
0 has m1 � t� 2 sign

changes on ðxiþ
1
; x;�

1
�t�1Þ: Then for all ea0; the spline G0 � eV0;t

0 has m1 � t� 2 sign

changes on ðxiþ
1
; x;�

1
�t�1Þ since ½xi1 ; x;�

1
�t�1 is a zero interval of G0: Furthermore, as

G0a0; from Proposition 4.31 we deduce that ½xi1 ; x;�
1
�t�1 is a maximal zero interval

of G0: Therefore, it is clear that for all ea0; small enough and with a suitable sign,

G0 � eV0;t
0 has a sign change on ðx;�

1
�t�1; x;�

1
�tÞ: Thus, there exists an e0 sufficiently

small for which g0 � ev0;t
0 does not go to 0 to the right nor to the left and G0 � eV 0;t

0

has m1 � t� 1 sign changes on ðxiþ
1
; x;�

1
�tÞ for all e satisfying 0oee0pe20: Then

applying ða2Þ to G0 � eV0;t
0 ; in S0;t

1 ; we see that G0 � eV 0;t
0 has m1 � t� 1 sign

changes on ðxi1 ; x; 1
Þ: Accordingly, for all e satisfying 0oee0pe20; using ða4Þ we

deduce that g0 � ev0;t
0 has no double zero, and

fg0 � ev0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

Now, in order to complete the proof of the claim, we show that there exists an e1
sufficiently small and satisfying e0e1o0 for which g0 � ev0;t

0 has no double zero, and

fg0 � ev0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ
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for all e satisfying 0oee1pe21: As ½xi1 ; x;�
1
�t�1 is a maximal zero interval of G0; the

broken line G
ðn�2Þ
0 vanishes identically on ½xi1 ; x;�

1
�t�1 and it has no zero in

ðx;�
1
�t�1; x;�

1
�t: Suppose, without loss of generality, G

ðn�2Þ
0 40 on ðx;�

1
�t�1; x;�

1
�t:

For all e satisfying 0oee0pe20; the spline G0 � eV 0;t
0 has m1 � t� 1 sign changes on

ðxiþ
1
;x;�

1
�tÞ: Then applying n � 2 times Lemma 4.8 we see that the broken line ðG0 �

eV0;t
0 Þðn�2Þ has a simple zero in each ðxi; xiþ1Þ; i ¼ iþ1 ; i

þ
1 þ 1;y; ;�1 � t� 1: Hence,

ðG0 � e0V0;t
0 Þðn�2Þðx;�

1
�t�1Þo0 for all e0 sufficiently small and satisfying 0oe0e0pe20;

because ðG0 � e0V0;t
0 Þðn�2Þðx;�

1
�tÞ40: Then it is not difficult to see that there exists a

sufficiently small e1 satisfying e1e0o0 for which g0 � ev0;t
0 does not go to 0 to the right

nor to the left and ðG0 � eV 0;t
0 Þðn�2Þ40 on ½x;�

1
�t�1; x;�

1
�t for all e satisfying

0oee1pe21: Hence, using ða4Þ we deduce that G0 � eV0;t
0 has m1 � t� 2 sign changes

on ðxi1 ; x; 1
Þ for all e satisfying 0oee1pe21; because G0 � eV0;t

0 has m1 � t� 2 sign

changes on ðxi1 ; x;�
1
�t�1Þ for all ea0: Accordingly, for all e satisfying 0oee1pe21; ða3Þ

applied to G0 � eV 0;t
0 shows that g0 � ev0;t

0 has no double zero, and fg0 � ev0;t
0 ¼

0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ O-ðJ\ðxi1 ; x; 1

ÞÞ: So the claim is proved.

Claim 3. The spline g0 has no zero interval in ½x;�
1
�t�1; bÞ:

Assume, contrary to our claim, that g0 has a zero interval in ½x;�
1
�t�1; bÞ: By

hypothesis, ½xi1 ; x;�
1
�t�1 is a zero interval of G0AS0;t

1 \f0g: Therefore, from

Proposition 4.31, ½xi1 ; x;�
1
�t�1 is a maximal zero interval of G0: Then, according

to our assumption, there exists a j04;�1 � t� 1 such that g0 has no zero interval in

½x;�
1
�t�1; xj0  and the restriction of g0 to ½x;�

1
�t�1; xj0  is in S0

;�
1
�t�1;j0

: We first show

that j0p; 1 is not possible. Indeed, suppose j0p; 1: Recall that G0 � eV 0;t
0 has m1 �

t� 2 sign changes on ðxi1 ; x;�
1
�t�1Þ for all ea0: As G0 is in S0

;�
1
�t�1;j0

; it follows that

for all e sufficiently small and with a suitable sign, G0 � eV0;t
0 has another sign

change on ðx;�
1
�t�1; x;�

1
�tÞ: The same fact is valid on ðxj0�1; xj0Þ; but both signs of e

cannot be the same, because G0 � lV
0;t
0 ; in S0;t

1 ; cannot have m1 � t sign changes for

any l: We conclude that G0 � eV0;t
0 has m1 � t� 1 sign changes for all e sufficiently

small. This contradicts the last sentence of ða4Þ because we have seen in the proof of

Claim 2 that for all e sufficiently small and with a suitable sign, ðG0 � eV 0;t
0 Þðn�2Þ has

no zero in ½x;�
1
�t�1; x;�

1
�t: Thus j04; 1: In this case, we will also obtain a

contradiction. Indeed, if j04; 1; then it is easy to see that for all ea0; small enough

and with a suitable sign, g0 � ev0;t
0 has a simple zero zðeÞAðxj0�1; xj0Þ; zðeÞ-xj0 as

e-0: Therefore, it is clear that for all ea0; small enough and with a suitable sign,

g0 � ev0;t
0 has a simple zero in ðJ\ðxi1 ; x; 1

ÞÞ\O; which contradicts Claim 2. Thus, we

conclude that g0 has no zero interval in ½x;�
1
�t�1; bÞ; and so the claim is proved.
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From Claim 3, g0 does not go to 0 to the right. Then Lemma 4.23(a) implies that
there exists m large enough such that g0 has no double zero in ½x; m

; bÞ; and

fg0 ¼ 0g-½x; m
; bÞ ¼ O-½x; m

; bÞ:

As v0;t
0 does not go to 0 to the right, ða5Þ implies that v0;t

0 has no double zero, and

fv
0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

From Claim 2, for all e sufficiently small, g0 � ev0;t
0 has no double zero and

fg0 � ev0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

Thus, it is clear that Lemma 4.28(a) applies to g0 and v
0;t
0 to conclude that g0 does

not have a lower right level than v0;t
0 : Therefore, (c) is proved. &

We are now in a position to prove Theorem 4.30.

Proof of Theorem 4.30. Assume that v
0;t
0 does not go to 0 to the right. Then Theorem

4.26 shows that there exists limxmb ðgðxÞ=v0;t
0 ðxÞÞ; xeO; for all gACðS1Þ: It is

obvious that S0;tþ1
1 becomes a linear subspace of S0;t

1 : Let

y0;t
l :¼ lim

xmb
xeO

v
0;t
l ðxÞ

v0;t
0 ðxÞ

; l ¼ 1; 2;y;m1 � t� 1:

Then it follows from (a) in Lemma 4.32 that 0ojy0;t
l joN; l ¼ 1; 2;y;m1 � t� 1:

Therefore, v
0;t
l � y0;t

l v
0;t
0 has a lower right level than v

0;t
0 : Moreover, it is not difficult

to see that fV
0;t
l � y0;t

l V
0;t
0 gm1�t�1

l¼1 is linearly independent. Then S0;tþ1
1 is precisely

the ðm1 � t� 1Þ-dimensional space spanned by this basis. We now show that S0;tþ1
1

is a WT-space. As every G in S0;tþ1
1 is also in the ðm1 � tÞ-dimensional WT-space

S0;t
1 ; G has at most m1 � t� 1 sign changes. On the other hand, CðGÞ has a lower

right level than v
0;t
0 : Thus using (b) in Lemma 4.32 we conclude that G has at most

m1 � t� 2 sign changes. So S0;tþ1
1 is weak Chebyshev. This proves (i).

To prove (ii), for each l ¼ 0; 1;y;m1 � t� 2 we use Property [JKZ] in the

ðm1 � t� 1Þ-dimensional WT-space S0;tþ1
1 to obtain a V

0;tþ1
l AS0;tþ1

1 \f0g for which

fyl
kg

m1�t�2
k¼1 is an alternating set. Observe that fyl

kg
m1�t�2
k¼1 is in ðxiþ

1
; x;�

1
�t�1Þ (Remark

4.29).

We claim that for each l ¼ 0; 1;y;m1 � t� 2; V
0;tþ1
l has no zero interval in

½xi1 ; x;�
1
�t�1: Assume to the contrary that for some l0; V

0;tþ1
l0 has a zero interval in

½xi1 ; x;�
1
�t�1: Then the location of the points yl0

1 ; y
l0

2 ;y; yl0

m1�t�2 implies that

½xi1 ; x;�
1
�t�1 has to be a zero interval of V

0;tþ1
l0 : Under this condition, and taking

into account that V
0;tþ1
l0 is in S0;t

1 ; we deduce from (c) of Lemma 4.32 that v
0;tþ1
l0 has

the same right level as v
0;t
0 ; which contradicts the definition of V

0;tþ1
l0 : This proves the

claim. Therefore, each V0;tþ1
l changes sign at yl

1; yl
2;y; yl

m1�t�2: As the restriction of
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every V 0;tþ1
l to ½xiþ

1
; x;�

1
�t�1 is in Siþ

1
; ;�

1
�t�1; it follows from Lemma 4.11(a) that

those points are the only zeros (of multiplicity 1) of V
0;tþ1
l in ½xiþ

1
; x;�

1
�t�1: Then it is

easy to see that the set fV
0;tþ1
l gm1�t�2

l¼0 ; obtained by the replacement method based on

fykgm1�t�2
k¼1 ; is linearly independent. Therefore, fV

0;tþ1
l gm1�t�2

l¼0 is a basis for S0;tþ1
1

satisfying that for l ¼ 0; 1;y;m1 � t� 2; the spline V
0;tþ1
l changes sign at the m1 �

t� 2 points yl
1; yl

2;y; yl
m1�t�2:

We now show that for l ¼ 0; 1;ym1 � t� 2; the spline V
0;tþ1
l has no zero interval

in ½xi1 ; x; 1
: We have seen above that for each l; V

0;tþ1
l has no zero interval in

½xi1 ; x;�
1
�t�1: Suppose that for some l; V0;tþ1

l has a zero interval ½xi0 ; xi0þ1; ;�1 �
t� 1pi0p; 1 � 1: Then V0;tþ1

l j½xiþ
1
;xi0

 is in the ði0 � iþ1 Þ-dimensional WT-space

S�
iþ
1
;i0
: On the other hand, V

0;tþ1
l changes sign at the m1 � t� 2 points

yl
1; yl

2;y; yl
m1�t�2; and by hypothesis, ton � 1 � sð; 1Þ: Therefore,

m1 � t� 2 ¼ ;�1 � iþ1 þ n � 1 � t� 2

4 ;�1 � iþ1 þ n � 1 � ðn � 1 � sð; 1ÞÞ � 2

¼ ; 1 � sð; 1Þ � iþ1 þ sð; 1Þ � 2

X i0 � iþ1 � 1:

This contradicts that S�
iþ
1
;i0

is an ði0 � iþ1 Þ-dimensional WT-space. Thus, for l ¼
0; 1;y;m1 � t� 2; the spline V 0;tþ1

l has no zero interval. So to prove that v0;tþ1
l has

no zero interval in ða; x; 1
 it is sufficient to show that v

0;tþ1
l has no zero interval in

ða; xi1 : According to ða1Þ; to achieve this result, and also to complete the proof of

ða01Þ; we shall prove that v
0;tþ1
l is proportional to v

0;t
l ; and so to vl as well, on

ða; x;�
1
�t�1: Observe that for each l ¼ 0; 1;y;m1 � t� 2; the m1 � t� 2 points

yl
1; yl

2;y; yl
m1�t�2 are simple zeros of V

0;tþ1
l j½xiþ

1
;x;�

1
�t�1 and also of V

0;t
l j½xiþ

1
;x;�

1
�t�1;

both in the space Siþ
1
;;�

1
�t�1: Hence, using Lemma 4.11(a) we see that there exists a

constant, say lla0; such that V0;tþ1
l ¼ llV

0;t
l on ½xi1 ; x;�

1
�t�1: Then applying

Theorem 4.19 to V 0;tþ1
l � llV

0;t
l we indeed deduce that v0;tþ1

l ¼ llv
0;t
l on ða; x;�

1
�t�1:

This proves ða01Þ:
To prove ða02Þ; let GAS0;tþ1

1 : As S0;tþ1
1 is contained in S0;t

1 ; applying ða2Þ to

GAS0;t
1 we see that for every nAN; g ð¼ CðGÞÞ has at most mn � t� 1 sign changes

on ðxin ; x; n
Þ: So to complete the proof of ða02Þ it is sufficient to show that for any

nAN; g does not have mn � t� 1 sign changes on ðxin ; x; n
Þ: Suppose to the contrary

that for some mAN; g has mm � t� 1 sign changes on ðxim ; x; m
Þ: Then (b) in Lemma

4.23 shows that g has the same right level as v
0;t
0 ; which contradicts that G is in

S0;tþ1
1 : This proves ða02Þ:
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To prove ða03Þ; let GAS0;tþ1
1 CS0;t

1 and assume that for some mAN; the spline g

(¼ CðGÞ) has mm � ðtþ 1Þ � 2 sign changes on ðxim ; x; m
Þ: Suppose also that g does

not go to 0 to the right nor to the left and that gðn�2Þ has no zero in some interval
½xi1 ; xi1þ1: As g does not go to 0 to the right nor to the left, Lemma 4.23 implies that
g has no zero interval in J\ðxim ; x; m

Þ: Consequently, to prove ða03Þ it suffices to show

that g has no double zeros and that g has no simple zero at points in ðJ\ðxim ; x; m
ÞÞ\O:

We shall use the following facts. As v0;t
0 does not go to 0 to the right (nor to the left),

ða5Þ implies that v
0;t
0 has no zero interval and that all the zeros of v

0;t
0 have

multiplicity one. Furthermore, for all e sufficiently small, g � ev0;t
0 does not go to 0 to

the right nor to the left. Finally, as gðn�2Þ has no zero in ½xi1 ; xi1þ1; the spline

ðg � ev0;t
0 Þðn�2Þ has no zero in ½xi1 ; xi1þ1 for all e sufficiently small. Then we can apply

Lemma 4.24 with V0;t
0 in the place of V :

Suppose that z0 is a double zero of g and z0AðJ\OÞ,ðxim ; x; m
Þ: Choose a k4m for

which z0Aðxik ; x; k
Þ: Then it follows from Lemma 4.24(a) (with V

0;t
0 in the place of V )

that g � ev0;t
0 has at least mk � ðtþ 1Þ � 2 þ 2 ¼ mk � t� 1 sign changes on

ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign. From ða2Þ applied to

G � eV 0;t
0 ; in S0;t

1 ; we see that g � ev0;t
0 has at most mn � t� 1 sign changes on

ðxin ; x; n
Þ for each nAN: Therefore, the spline g � ev0;t

0 has mk � t� 1 sign changes on

ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign. Accordingly, we can

choose an e sufficiently small and with a suitable sign in such a way that g � ev0;t
0

does not go to 0 to the right nor to the left, g � ev0;t
0 has mk � t� 1 sign changes on

ðxik ; x; k
Þ; and ðg � ev0;t

0 Þðn�2Þ has no zero in ½xi1 ; xi1þ1: This contradicts ða4Þ applied

to G � eV0;t
0 AS0;t

1 : Thus, g has no double zero at points in ðJ\OÞ,ðxim ; x; m
Þ:

Suppose now that z00AO-ðJ\ðxim ; x; m
ÞÞ is a double zero of g: Pick a k4m for which

z00Aðxik ; x; k
Þ: Then from Lemma 4.24(b), g � ev0;t

0 has at least mk � ðtþ 1Þ � 2 þ
1 ¼ mk � t� 2 sign changes on ðxikx; k

Þ for all e sufficiently small. Hence, applying

ða2Þ to G � eV 0;t
0 ; in S0;t

1 ; we deduce that g � ev0;t
0 has mk � t� te sign changes on

ðxik ; x; k
Þ; 1ptep2; for all e sufficiently small. Thus, we see that for all e sufficiently

small, the following conditions hold:

* g � ev0;t
0 does not go to 0 to the right nor to the left;

* ðg � ev0;t
0 Þðn�2Þ has no zero in ½xi1 ; xi1þ1;

* g � ev0;t
0 has mk � t� te sign changes on ðxik ; x; k

Þ; 1ptep2:

Hence, if te ¼ 1 for some e satisfying the above conditions, then ða4Þ applied to

G � eV 0;t
0 AS0;t

1 is contradicted. Thus, te ¼ 2 for all e sufficiently small. Then for all e
sufficiently small, ða3Þ applied to G � eV0;t

0 AS0;t
1 shows that g � ev0;t

0 has no double
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zero in J\ðxik ; x; k
Þ; and

fg � ev0;t
0 ¼ 0g-ðJ\ðxik ; x; k

ÞÞ ¼ O-ðJ\ðxik ; x; k
ÞÞ:

On the other hand, we apply Lemma 4.23 to g and assume that k is so large that we
deduce that all the zeros of g in J\ðxik ; x; k

Þ have multiplicity one, and

fg ¼ 0g-ðJ\ðxik ; x; k
ÞÞ ¼ O-ðJ\ðxik ; x; k

ÞÞ:

Furthermore, as v0;t
0 does not go to 0 to the right, ða5Þ applied to V 0;t

0 implies that all

the zeros of v
0;t
0 have multiplicity one, and

fv
0;t
0 ¼ 0g-J\ðxi1 ; x; 1

Þ ¼ O-J\ðxi1 ; x; 1
Þ:

We are now in a position to apply (c) in Lemma 4.28 to show that g does not have a

lower right level than v
0;t
0 : But this contradicts that G is in S0;tþ1

1 : Consequently, g

has no double zero at points in O-ðJ\ðxim ; x; m
ÞÞ:

We have just proven that g has no double zero. So to prove ða03Þ it remains to show

that g has no simple zero at points in ðJ\ðxim ; x; m
ÞÞ\O: This proof follows in a similar

way to that of the previous case. So ða03Þ is proved.

We now prove ða04Þ: Let GAS0;tþ1
1 and assume that for some mAN; the restriction

of g ð¼ CðGÞÞ to ðxim ; x; m
Þ has mm � ðtþ 1Þ � 1 sign changes. Suppose also that g

does not go to 0 to the right nor to the left. We shall apply Lemmas 4.24 and 4.28 to

g and v
0;t
0 : For this we shall use, according to ða5Þ; that v

0;t
0 has no zero interval, all

the zeros of v0;t
0 have multiplicity one, and

fv
0;t
0 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

We now prove that g has no double zero, and fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼

O-ðJ\ðxim ; x; m
ÞÞ: As g does not go to 0 to the right nor to the left, Lemma 4.23

implies that g has no zero interval in J\ðxim ; x; m
Þ: So it is sufficient to prove that g has

no double zero and that g has no simple zeros in ðJ\ðxim ; x; m
ÞÞ\O: To prove this

observe that if g has a double zero, or a simple zero in ðJ\ðxim ; x; m
ÞÞ\O; then Lemma

4.24, in conjunction with ða2Þ; shows that for each k4m and large enough, g � ev0;t
0

has mk � t� 1 sign changes on ðxik ; x; k
Þ for all e sufficiently small. Now the proof

follows in a similar way as that of ða03Þ; and we again deduce the contradiction that g

does not have a lower right level than v
0;t
0 : Thus, g has no double zero, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

To prove that gðn�2Þ has at least a zero in ½xi; xiþ1; all iAZ; suppose to the contrary

that there exists i2AZ such that gðn�2Þ has no zero in ½xi2 ; xi2þ1: Then since g has
mm � t� 2 sign changes on ðxim ; x; m

Þ; it is easy to see that for all e sufficiently small

the following conditions hold:

* g � ev0;t
0 does not go to 0 to the right nor to the left;

ARTICLE IN PRESS
A. Damas, M. Marano / Journal of Approximation Theory 126 (2004) 60–113 87



* ðg � ev0;t
0 Þðn�2Þ has no zero in ½xi2 ; xi2þ1;

* g � ev0;t
0 has mm � t� te sign changes on ðxim ; x; m

Þ; 1ptep2:

We now apply ða4Þ to deduce that te ¼ 2 necessarily, whence ða3Þ implies that g �
ev0;t

0 has no double zero, and

fg � ev0;t
0 ¼ 0g-ðJ\ðxim ; x; m

ÞÞ ¼ O-ðJ\ðxim ; x; m
ÞÞ

for all e sufficiently small. Then observe that we can apply Lemma 4.28(c) to g and

v
0;t
0 to conclude that g does not have a lower right level than v

0;t
0 ; which is a

contradiction. Thus, gðn�2Þ has at least a zero in ½xi; xiþ1; all iAZ: This completes the
proof of ða04Þ:

We now prove ða05Þ: From ða01Þ; v
0;tþ1
l has no zero interval in ða; x; 1

: Furthermore,

if v0;tþ1
l does not go to 0 to the right, then Lemma 4.23(a) implies that v0;tþ1

l has no

zero interval in ½x; 1
; bÞ: Therefore, v0;tþ1

l has no zero interval. So the first statement in

ða05Þ is proved.

From ða01Þ; V0;tþ1
l has exactly m1 � t� 2 (simple) zeros in ðxi1 ; x; 1

Þ: So we can

apply ða04Þ to V
0;tþ1
l AS0;tþ1

1 ; since v
0;tþ1
l does not go to 0 to the right nor to the left.

Then v
0;tþ1
l has no double zero, and

fv0;tþ1
l ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

Thus, counting the points of O-ððxik ; x; k
Þ\ðxi1 ; x; 1

ÞÞ; k41; we deduce that v
0;tþ1
l has

mk � t� 2 simple zeros in ðxik ; x; k
Þ; kX1: To complete the proof of ða05Þ it remains

to show that v
0;tþ1
l has no zero of odd multiplicity greater than two. Assume to the

contrary that v
0;tþ1
l has a zero of odd multiplicity greater than two at a point

zAðxik ; x; k
Þ; kX1: From ða5Þ; all the zeros of v

0;t
l have multiplicity one, and

fv
0;t
l ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

Using also ða1Þ and ða01Þ we see that all the zeros of v0;tþ1
l are zeros of v0;t

l as well.

Accordingly, z is a zero of v
0;t
l of multiplicity one. Therefore, it is an easy exercise to

prove that for all e sufficiently small and with a suitable sign, v
0;tþ1
l � ev0;t

l has at least

three different simple zeros, say z1ðeÞ; z2ðeÞ and z3ðeÞ; satisfying z1ðeÞmz as e-0;
z2ðeÞ ¼ z and z3ðeÞkz as e-0: Then for all ea0; small enough and with a suitable

sign, the spline v
0;tþ1
l � ev0;t

l has at least mk � t� 2 þ 2 ¼ mk � t simple zeros in

ðxik ; x; k
Þ: This contradicts ða2Þ applied to V

0;tþ1
l � eV 0;t

l AS0;t
1 : Thus, all the zeros of

v
0;tþ1
l have multiplicity one. This proves ða05Þ; which completes the proof of (ii). &

Lemma 4.33. For each l ¼ 0; 1;y;m1 � 1; let V
0;0
l :¼ Vl : Then the m1-dimensional

WT-space S0;0
1 ð¼ S1Þ and the basis fV

0;0
0 ;V

0;0
1 ;y;V

0;0
m1�1g satisfy properties ða1Þ–

ða5Þ of Theorem 4.30 with t ¼ 0:
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Proof. By the construction of Vl in Remark 4.29, l ¼ 0; 1;y;m1 � 1; the spline V 0;0
l

ð¼ VlÞ changes sign at the m1 � 1 points yl
1; yl

2;y; yl
m1�1: So V0;0

l has m1 � 1 sign

changes, since V 0;0
l is in the m1-dimensional WT-space S1 ð¼ S0;0

1 Þ: Lemma 4.21

now implies that v
0;0
l ð¼ vlÞ has no zero interval, and thus it has no zero interval in

ða; x; 1
: This proves ða1Þ with t ¼ 0:

Observe that ða2Þ holds with t ¼ 0 because the restriction of g (¼ CðGÞ) to
ðxin ; x; n

Þ is in the mn-dimensional WT-space Sn:

To prove ða3Þ; let GAS0;0
1 and suppose that for some mAN; the restriction of

g ð¼ CðGÞÞ to ðxim ; x; m
Þ has mm � 2 sign changes. We are also assuming that g does

not go to 0 to the right nor to the left and that the broken line gðn�2Þ has no zero in
some interval ½xi1 ; xi1þ1: Theorem 4.19 implies that

fg ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ+O-ðJ\ðxi1 ; x; 1

ÞÞ:

On the other hand, as g does not go to 0 to the right nor to the left, Lemma 4.23
implies that g has no zero interval in J\ðxi1 ; x; 1

Þ: In this way, to see that g has no

double zero, and that

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ;

it is sufficient to demonstrate that g has no double zero, and that g has no simple zero

in ðJ\ðxim ; x; m
ÞÞ\O: As V

0;0
0 has m1 � 1 sign changes, Lemma 4.21 implies that v

0;0
0 has

no zero interval and that all the zeros of v
0;0
0 have multiplicity one. Hence, we can

apply Lemma 4.24 with V ¼ V
0;0
0 : Suppose that g has a double zero, or a simple zero

at a point in ðJ\ðxim ; x; m
ÞÞ\O: Then Lemma 4.24 (with V0;0

0 in the place of V and with

t ¼ 2) implies that in either case, for a k large enough, g � ev0;0
0 has mk � 1 sign

changes on ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign. Then from

Lemma 4.21, ðg � ev0;0
0 Þðn�2Þ has a simple zero in ðxi; xiþ1Þ; all iAZ: But, as gðn�2Þ has

no zero in ½xi1 ; xi1þ1; for all e sufficiently small ðg � ev0;0
0 Þðn�2Þ has no zero in

½xi1 ; xi1þ1: So we obtain a contradiction. In consequence, g has no double zero, and g

has no simple zero in ðJ\ðxim ; x; m
ÞÞ\O; which proves ða3Þ with t ¼ 0:

Finally, note that ða4Þ and ða5Þ; with t ¼ 0; follow from Lemma 4.21. &

Due to Remark 4.29, V 0;0
0 (¼ V0) has m1 � 1 sign changes. Then by Lemma 4.21,

v
0;0
0 has no zero interval, and therefore v

0;0
0 does not go to 0 to the right (nor to the

left). From Lemma 4.33, S0;0
1 and the basis fV

0;0
0 ;V

0;0
1 ;y;V

0;0
m1�1g satisfy properties

ða1Þ–ða5Þ of Theorem 4.30. We thus apply Theorem 4.30 to the space S0;0
1 to get the

ðm1 � 1Þ-dimensional WT-subspace S0;1
1 and the basis fV

0;1
0 ;V

0;1
1 ;y;V

0;1
m1�2g; which

fulfill ða1Þ–ða5Þ of Theorem 4.30 with t ¼ 1: If 1on � 1 � sð; 1Þ and v
0;1
0 ð¼ CðV0;1

0 ÞÞ
does not go to 0 to the right, then Theorem 4.30 again applies to get the ðm1 � 2Þ-
dimensional WT-subspace S0;2

1 and the basis fV0;2
0 ;V0;2

1 ;y;V 0;2
m1�3g; which fulfill
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ða1Þ–ða5Þ of Theorem 4.30 with t ¼ 2: Proceeding in this way, if

t� :¼ 1 þ max
0pton�1�sð; 1Þ

ft : v
0;t
0 ð¼ CðV0;t

0 ÞÞ does not go to 0 to the rightg;

then it is clear that we obtain the WT-subspaces

ðS1 ¼ÞS0;0
1 *S0;1

1 *?*S0;t�

1 ;

with basis

fV 0;0
0 ;y;V0;0

m1�1g; fV0;1
0 ;y;V0;1

m1�2g;y; fV 0;t�

0 ;y;V0;t�

m1�t��1g;

respectively. As an immediate consequence of this discussion, we have the following
result.

Corollary 4.34. For 0ptpt�; the set S0;t
1 is an ðm1 � tÞ-dimensional WT-subspace of

S1: Also, S0;t
1 and the basis fV

0;t
0 ;V

0;t
1 ;y;V

0;t
m1�t�1g fulfill properties ða1Þ–ða5Þ of

Theorem 4.30 as well as Proposition 4.31 and Lemma 4.32.

In the sequel we shall use Corollary 4.34 without an explicit reference whenever we

apply ða1Þ–ða5Þ of Theorem 4.30, Proposition 4.31 or Lemma 4.32 to the spaces S0;t
1 ;

0ptpt�:

Remark 4.35. It is clear that v
0;t
0 does not go to 0 to the right if 0ptot�: On the

contrary, we now assert that v
0;t�

0 ð¼ CðV 0;t�

0 ÞÞ goes to 0 to the right. Indeed, this

follows immediately from the definition of t� whenever t�on � 1 � sð; 1Þ: So

consider t� ¼ n � 1 � sð; 1Þ: From Theorem 4.19 we deduce that CðGÞ goes to 0 to

the right for all GAS�
i1;; 1

: Hence, S�
i1;; 1

-S1DS0;t�

1 :

Furthermore, dim ðS�
i1;; 1

-S1Þ ¼ m1 � ðn � 1 � sð; 1ÞÞ ¼ m1 � t� ¼ dimS0;t�

1 :

Thus, S0;t�

1 ¼ S�
i1;; 1

-S1 whenever t� ¼ n � 1 � sð; 1Þ; and therefore v
0;t�

0 goes to

0 to the right. This proves the assertion. Finally, using (a) in Lemma 4.32 we

conclude that for l ¼ 0; 1;y;m1 � t� 1; the spline v
0;t
l goes to 0 to the right if and

only if t ¼ t�:

Now let t be fixed, 0ptot�; and consider the ðm1 � tÞ-dimensional WT-space

S0;t
1 : In the following theorem we shall prove the existence of WT-subspaces of S0;t

1

‘‘by lowering the left level’’. In particular, the theorem establishes five properties for

S0;t
1 : Lemma 4.39 shows that S0;t

1 indeed satisfies these properties. Note that if

t ¼ 0; then Theorem 4.36 is analogous to Theorem 4.30.

Theorem 4.36. Let S
r;t
1 be an ðm1 � t� rÞ-dimensional WT-subspace of S0;t

1 ;

0ptot�; 0pron � 1 � sði1Þ; with a basis fVr;t
r ;V

r;t
rþ1;y;V

r;t
m1�t�1g; and such that
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the following properties hold:

ðb1Þ For each l ¼ r; rþ 1;y;m1 � t� 1; the spline V
r;t
l changes sign at the m1 �

t� r� 1 points yl
rþ1; yl

rþ2;y; yl
m1�t�1; whence it has m1 � t� r� 1 sign

changes. Moreover, for each l ¼ r; rþ 1;y;m1 � t� 1; v
r;t
l :¼ CðVr;t

l Þ is

proportional to v
0;t
l on ½xiþ

1
þr; bÞ; and v

r;t
l has no zero interval in ½xi1 ; bÞ:

ðb2Þ Let GAS
r;t
1 : Then for every nAN; the restriction of g :¼ CðGÞ to ðxin ; x; n

Þ has at

most mn � t� r� 1 sign changes.
ðb3Þ Let GAS

r;t
1 and assume that for some mAN; the restriction of g ð¼ CðGÞÞ to

ðxim ; x; m
Þ has mm � t� r� 2 sign changes. If g does not go to 0 to the right nor to

the left and the broken line gðn�2Þ has no zero in some interval ½xj1 ; xj1þ1; then g

has no double zero, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

ðb4Þ Let GAS
r;t
1 and assume that for some mAN; the restriction of g ð¼ CðGÞÞ to

ðxim ; x; m
Þ has mm � t� r� 1 sign changes. Suppose also that g does not go to 0 to

the right nor to the left. Then g has no double zero, and

fg ¼ 0g-ðJ\ðxim ; x; m
ÞÞ ¼ O-ðJ\ðxim ; x; m

ÞÞ:

Moreover, gðn�2Þ has at least a zero in ½xj; xjþ1; all jAZ:

ðb5Þ For each l ¼ r; rþ 1;y;m1 � t� 1; if v
r;t
l ð¼ CðVr;t

l ÞÞ does not go to 0 to the

left, then v
r;t
l has no zero interval, all the zeros of v

r;t
l have multiplicity one, and

fv
r;t
l ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:

If vr;tr does not go to 0 to the left, then

(i) The set S
rþ1;t
1 :¼ fGAS

r;t
1 : CðGÞ has a lower left level than vr;tr g is an

ðm1 � t� r� 1Þ-dimensional WT-subspace of S
r;t
1 :

(ii) There exists a basis fV
rþ1;t
rþ1 ;V

rþ1;t
rþ2 ;y;V

rþ1;t
m1�t�1g for S

rþ1;t
1 such that S

rþ1;t
1 and

this basis fulfill the analogs of ðb1Þ–ðb5Þ with rþ 1 in place of r; say ðb0
1Þ–ðb0

5Þ;
respectively.

The proofs of Proposition 4.37 and Lemma 4.38 are analogous to that of
Proposition 4.31 and Lemma 4.32, respectively, and so we omit them. We only

remark that V
0;t
0 and v0;t

0 must be here replaced with Vr;t
r and vr;tr ; respectively. Also,

Lemma 4.23(b) and Lemma 4.28(b) have to be used in Lemma 4.38 instead of
Lemma 4.23(a) and Lemma 4.28(a), respectively.

Proposition 4.37. Let S
r;t
1 be an ðm1 � t� rÞ-dimensional WT-subspace of S0;t

1 ;

0ptot�; 0prpn � 1 � sði1Þ; with a basis fVr;t
r ;V

r;t
rþ1;y;V

r;t
m1�t�1g: Assume that
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S
r;t
1 and this basis satisfy ðb1Þ of Theorem 4.36, and let G0AS

r;t
1 : If ½xi0 ; x;2

1
t is a zero

interval of G0; i1pi0piþ1 þ r; then CðG0Þ vanishes identically on ða; x;�
1
�t:

Lemma 4.38. Let S
r;t
1 be an ðm1 � t� rÞ-dimensional WT-subspace of S0;t

1 ;

0ptot�; 0prpn � 1 � sði1Þ; with a basis fVr;t
r ;V

r;t
rþ1;y;V

r;t
m1�t�1g: If S

r;t
1 and

this basis satisfy ðb1Þ–ðb5Þ of Theorem 4.36, then there holds

(a) The splines v
r;t
l ð¼ CðVr;t

l ÞÞ; l ¼ r; rþ 1;y;m1 � t� r� 1; have the same left

level. Hence, vr;tr does not have a lower left level than CðGÞ for any GAS
r;t
1 :

(b) Let G1AS
r;t
1 and suppose that g1 :¼ CðG1Þ has mm � t� r� 1 sign changes on

ðxim ; x; m
Þ for some mAN: Then g1 has the same left level as vr;tr :

(c) Let G0AS
r;t
1 \f0g; and suppose that ½xiþ

1
þrþ1; x;�

1
�t is a zero interval of G0: Then

CðG0Þ has the same left level as vr;tr :

Proof of Theorem 4.36. Assume vr;tr does not go to 0 to the left. Then Theorem 4.26

shows that there exists limxka ðgðxÞ=vr;tr ðxÞÞ; xeO; for all gACðS1Þ: It is clear that

S
rþ1;t
1 becomes a linear subspace of S

r;t
1 : Let

*yr;tl :¼ lim
xka
xeO

v
r;t
l ðxÞ

v
r;t
r ðxÞ; l ¼ rþ 1; rþ 2;y;m1 � t� 1:

Then it follows from (a) in Lemma 4.38 that 0oj*yr;tl joN: So v
r;t
l � *yr;tl vr;tr has a

lower left level than vr;tr : Moreover, it is easily seen that

fV
r;t
l � *yr;tl Vr;t

r gm1�t�1
l¼rþ1

is linearly independent. Then S
rþ1;t
1 is the ðm1 � t� r� 1Þ-dimensional space

spanned by this basis. We now show that S
rþ1;t
1 is a WT-space. As every G in S

rþ1;t
1

is also in the ðm1 � t� rÞ-dimensional WT-space S
r;t
1 ; the spline G has at most

m1 � t� r� 1 sign changes. On the other hand, CðGÞ has a lower left level than vr;tr :

Thus, using (b) in Lemma 4.38 we conclude that G has at most m1 � t� r� 2 sign

changes. Thus, S
rþ1;t
1 is weak Chebyshev. This proves (i).

To prove (ii), for each l ¼ rþ 1; rþ 2;y;m1 � t� 1; we use Property [JKZ] in

the ðm1 � t� r� 1Þ-dimensional WT-space S
rþ1;t
1 to obtain the spline

V
rþ1;t
l AS

rþ1;t
1 \f0g for which fyl

kg
m1�t�1
k¼rþ2 is an alternating set. Observe that

fyl
kg

m1�t�1
k¼rþ2 is in ðxiþ

1
þrþ1; x;�

1
�tÞ (Remark 4.29).

We now claim that for each l ¼ rþ 1; rþ 2;y;m1 � t� 1; the spline V
rþ1;t
l has

no zero interval in ½xiþ
1
þrþ1; x;�

1
�t: Suppose to the contrary that for some l0; V

rþ1;t
l0

has a zero interval in ½xiþ
1
þrþ1; x;�

1
�t: Then the location of the points

yl0

rþ2; yl0

rþ3;y; yl0

m1�t�1 forces ½xiþ
1
þrþ1; x;�

1
�t to be a zero interval of V

rþ1;t
l0 :

Therefore, (c) in Lemma 4.38 applied to V
rþ1;t
l0 AS

r;t
1 implies that CðVrþ1;t

l0 Þ has
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the same left level than vr;tr ; which contradicts the definition of V
rþ1;t
l0 : This proves

the claim. Thus, for each l ¼ rþ 1; rþ 2;y;m1 � t� 1; V
rþ1;t
l changes sign at the

m1 � t� r� 2 points yl
rþ2; yl

rþ3;y; yl
m1�t�1: As the restriction of every V

rþ1;t
l to the

interval ½xiþ
1
þrþ1; x;�

1
�t is in Siþ

1
þrþ1; ;�

1
�t; it follows from Lemma 4.11(a) that those

points are the only zeros (of multiplicity 1) of V
rþ1;t
l in ½xiþ

1
þrþ1; x;�

1
�t: Then it is

easy to see that the set fV
rþ1;t
l gm1�t�1

l¼rþ1 ; obtained by the replacement method based on

fykgm1�t�1
k¼rþ2 ; is linearly independent. Thus, fV

rþ1;t
l gm1�t�1

l¼rþ1 is a basis for S
rþ1;t
1

satisfying that for l ¼ rþ 1; rþ 2;y;m1 � t� 1; the spline V
rþ1;t
l changes sign at

the m1 � t� ðrþ 1Þ � 1 ¼ m1 � t� r� 2 points yl
rþ2; yl

rþ3;y; yl
m1�t�1:

We have just seen that for l ¼ rþ 1; rþ 2;y;m1 � t� 1; V
rþ1;t
l has no zero

interval in ½xiþ
1
þrþ1;x;�

1
�t: So to prove that v

rþ1;t
l has no zero interval in ½xi1 ; bÞ it is

sufficient to show that v
rþ1;t
l has neither zero interval in ½xi1 ; xiþ

1
þrþ1 nor in ½x;�

1
�t; bÞ:

If v
rþ1;t
l has a zero interval in ½xi1 ; xiþ

1
þrþ1; then v

rþ1;t
l j½i0;;�1 �t is in the WT-space

Sþ
i0;;

�
1
�t; with i1oi0oiþ1 þ rþ 1; so that dimSþ

i0;;
�
1
�tp;�1 � t� i1 � 1: Now, we

know that v
rþ1;t
l has m1 � t� r� 2 sign changes on ðxiþ

1
þrþ1; x;�

1
�tÞ (C½xi0 ; x;�

1
�t),

and using that ron � 1 � sði1Þ we get m1 � t� r� 2X;�1 � t� i1 � 1; which is a

contradiction. On the other hand, note that from (a1) and because tot�; if v
rþ1;t
l is

proportional to v
0;t
l on ½xiþ

1
þrþ1; bÞ; then v

rþ1;t
l has no zero interval in ½x;�

1
�t; bÞ

(C½xiþ
1
þrþ1; bÞ). Thus, we now show that for l ¼ rþ 1; rþ 2;y;m1 � t� 1; v

rþ1;t
l is

proportional to v0;t
l on ½xiþ

1
þrþ1; bÞ: For this purpose, observe that for each l ¼

rþ 1; rþ 2;y;m1 � t� 1; the m1 � t� r� 2 points yl
rþ2; yl

rþ3;y; yl
m1�t�1 are

simple zeros of V
rþ1;t
l j½xiþ

1
þrþ1

;x;�
1
�t and also of V

r;t
l j½xiþ

1
þrþ1

;x;�
1
�t; both in the space

Siþ
1
þrþ1;;�

1
�t: Hence, applying Lemma 4.11(a) we easily deduce that

V
rþ1;t
l j½xiþ

1
þrþ1

;x;�
1
�t and V

r;t
l j½xiþ

1
þrþ1

;x;�
1
�t must be proportional. Then there is a linear

combination of V
rþ1;t
l and V

r;t
l ; which is in S

r;t
1 CS0;t

1 ; vanishing identically on

½xiþ
1
þrþ1; x;�

1
�t: Now, it is easy to deduce from Proposition 4.31 that v

rþ1;t
l and v

r;t
l

are proportional on ½xiþ
1
þrþ1; bÞ: Finally, according to (b1) we conclude that for

l ¼ rþ 1; rþ 2;y;m1 � t� 1; v
rþ1;t
l is proportional to v0;t

l on ½xiþ
1
þrþ1; bÞ: This

completes the proof of (b0
1).

The proofs of (b0
2)–(b0

5) are completely analogous to those of (a02)–(a05) in

Theorem 4.30, respectively, proceeding now ‘‘to the left’’. This completes the proof
of (ii). &

Lemma 4.39. For 0ptot�; the ðm1 � tÞ-dimensional WT-space S0;t
1 and the basis

fV 0;t
0 ;y;V0;t

m1�t�1g fulfill (b1)–(b5) of Theorem 4.36 with r ¼ 0:
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Proof. By Corollary 4.34, the space S0;t
1 and the basis fV 0;t

0 ;y;V0;t
m1�t�1g fulfill the

properties (a1)–(a5). Hence, to prove (b1) with r ¼ 0 it is sufficient to show that for

l ¼ 0; 1;y;m1 � t� 1; v
0;t
l has no zero interval in ½x; 1

; bÞ: From Remark 4.35, v
0;t
l

does not go to 0 to the right. Lemma 4.23(a) now implies that for l ¼ 0; 1;y;m1 �
t� 1; v0;t

l has no zero interval in ½x; 1
; bÞ: Thus, (b1) is proved.

Whenever r ¼ 0; note that the statements (b2), (b3) and (b4) coincide with (a2), (a3)
and (a4), respectively. Therefore, Corollary 4.34 implies that (b2), (b3) and (b4) hold.

Finally, to prove (b5) with r ¼ 0; observe that for l ¼ 0; 1;y;m1 � t� 1; the

spline v
0;t
l does not go to 0 to the right, since tot�: Then (a5) implies (b5) whenever

r ¼ 0: &

Let t be a fixed and arbitrary integer satisfying 0ptot�: From (a1), v
0;t
0 has no

zero interval in ða; xi1Þ; whence v0;t
0 does not go to 0 to the left. We can therefore use

Theorem 4.36 to obtain the ðm1 � t� 1Þ-dimensional WT-subspace S1;t
1 and the

basis fV1;t
1 ;V1;t

2 ;y;V1;t
m1�t�1g; which fulfill properties (b1)–(b5) of Theorem 4.36 with

r ¼ 1: If 1on � 1 � sði1Þ and v1;t
1 (¼ CðV 1;t

1 Þ) does not go to 0 to the left, then

Theorem 4.36 again applies to obtain the ðm1 � t� 2Þ-dimensional WT-subspace

S2;t
1 and the basis fV

2;t
2 ;V

2;t
3 ;y;V

2;t
m1�t�1g; which fulfill (b1)–(b5) of Theorem 4.36

with r ¼ 2: Proceeding in this way, if we define

r�t :¼ 1 þ max
0pron�1�sði1Þ

fr : vr;tr ð¼ CðVr;t
r ÞÞ does not go to 0 to the leftg;

then we get the WT-subspaces

S0;t
1 *S1;t

1 *?*S
r�t ;t
1 ;

with basis

fV
0;t
0 ;y;V

0;t
m1�t�1g; fV

1;t
1 ;y;V

1;t
m1�t�1g;y; fV

r�t ;t
r�t

;y;V
r�t ;t
m1�t�1g;

respectively. Summarizing, we have the following result.

Corollary 4.40. For 0ptot� and 0prpr�t ; the set S
r;t
1 is an ðm1 � t� rÞ-

dimensional WT-subspace of S0;t
1 : Moreover, the subspace S

r;t
1 and the basis

fVr;t
r ;V

r;t
rþ1;y;V

r;t
m1�t�1g fulfill properties (b1)–(b5) of Theorem 4.36 as well as

Proposition 4.37 and Lemma 4.38.

As with Corollary 4.34, we shall use Corollary 4.40 without an explicit reference
whenever we apply (b1)–(b5) of Theorem 4.36, Proposition 4.37 or Lemma 4.38 to

the spaces S
r;t
1 ; 0ptot�; 0prpr�t :

Lemma 4.41. For t ¼ 0; 1;y; t� � 1; the integer r�tð¼: r�Þ does not depend on t:
Moreover, for r ¼ 0; 1;y; r�; the splines vr;tr and vr;0r are proportional on ða; x;�

1
�t;

whence they have the same left level.
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Proof. Let t0 be an arbitrary integer in ½1; t� � 1: From (a1), v0;t0

0 and v0 ð¼ v0;0
0 Þ are

proportional on ða; x;�
1
�t0

; whence they have the same left level. It also follows from

(a1) that both v0;t0

0 and v0;0
0 do not go to 0 to the left. So the spaces S1;t0

1 and S1;0
1

exist, i.e., min fr�t0
; r�0gX1: For r40 we consider the following inductive hypothesis:

The spaces S
r;t0

1 and S
r;0
1 exist; i:e:; minfr�t0

; r�0gXr;

For r0 ¼ 0; 1;y; r� 1; v
r0;t0

r0 and v
r0;0
r0 are proportional on ða; x;�

1
�t0

:

(
ð12Þ

We now prove the following claim.

Claim 1. The spline Vr;t0
r is in S

r;0
1 :

For r0 ¼ 0; 1;y; r� 1; by construction it follows that Vr;t0
r is in S

r;t0

1 CS
r0;t0

1 and

also that vr;t0
r has a lower left level than v

r0;t0

r0 : So, taking into account the inductive

hypothesis, we see that vr;t0
r has also a lower left level than v

r0;0
r0 : Thus Vr;t0

r is in

S
r;t0

1 CS0;t0

1 CS0;0
1 ; and vr;t0

r has a lower left level than v
r0;0
r0 for r0 ¼ 0; 1;y; r� 1:

Hence,

Vr;t0
r AS0;0

1 -S1;0
1 -?-S

r;0
1 ¼ S

r;0
1 :

This proves the claim.

Note that the restrictions of both Vr;t0
r and Vr;0

r to ½xiþ
1
þr; x;�

1
�t0

 have m1 � t0 �
r� 1 simple zeros in this interval, and in addition these zeros are the same for both

restrictions. Then using Lemma 4.11(a) it is easy to see that Vr;t0
r and Vr;0

r are

proportional on ½xiþ
1
þr; x;�

1
�t0

; since both restrictions are in the space Siþ
1
þr;;�

1
�t0

:

Then there exists a linear combination of both splines, say Vr;t0
r � lVr;0

r with la0;

which vanishes identically on ½xiþ
1
þr; x;�

1
�t0

: Moreover, it follows from Claim 1 that

Vr;t0
r � lVr;0

r AS
r;0
1 : Therefore, Proposition 4.37, with t ¼ 0 and i0 ¼ iþ1 þ r; shows

that vr;t0
r � lvr;0r is identically zero in the interval ða; x;�

1
�t0

: Hence, vr;t0
r and vr;0r are

proportional on ða; x;�
1
�t0

: So we have two cases to consider. First, both vr;t0
r and

vr;0r go to 0 to the left. Then r�t0
¼ r�0 ¼ r and for 0pr0pr�t0

¼ r�0; the spline v
r0;t0

r0 is

proportional to v
r0;0
r0 on ða; x;�

1
�t0

: Secondly, both vr;t0
r and vr;0r do not go to 0 to the

left. In this case, we again obtain the conditions in (12), now with rþ 1 in the place
of r; and therefore the same procedure can be applied. Thus, we finally conclude that
r�t0

¼ r�0 ¼ rþ l for some l satisfying rprþ lpn � 1 � sði1Þ; and that for r0 ¼
0; 1;y; r�t0

¼ r�0; the splines v
r0;t0

r0 and v
r0;0
r0 are proportional on ða; x;�

1
�t0

; whence

they have the same left level. This proves the lemma since t0 is an arbitrary integer in
½1; t� � 1: &
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Remark 4.42. Let t be an integer satisfying 0ptot�: It is clear that vr;tr does not go

to 0 to the left whenever ror�: On the contrary, we now assert that v
r�;t
r�

(¼ CðVr�;t
r� Þ) goes to 0 to the left. Indeed, the assertion follows immediately from the

definition of r� (¼ r�t) provided r�on � 1 � sði1Þ: Then assume r� ¼ n � 1 � sði1Þ:
Using Theorem 4.19 we deduce that CðGÞ goes to 0 to the left for all GASþ

i1;; 1
:

Hence, Sþ
i1;; 1

-S1DS
r�;0
1 : Furthermore, dimðSþ

i1;; 1
-S1Þ ¼ m1 � ðn � 1 � sði1ÞÞ ¼

m1 � r� ¼ dimS
r�;0
1 ; whence S

r�;0
1 ¼ Sþ

i1;; 1
-S1 whenever r� ¼ n � 1 � sði1Þ:

Thus, v
r�;0
r� goes to 0 to the left. Lemma 4.41 now completes the assertion for v

r�;t
r� ;

0otot�: Finally, using (a) in Lemma 4.38 we conclude that for l ¼ r; rþ
1;y;m1 � t� 1; the spline v

r;t
l goes to 0 to the left if and only if r ¼ r�:

From (b1), for 0prpr� the functions vr;t
��1

r and v
0;t��1
0 are proportional on

½xiþ
1
þr; bÞ; and therefore they have the same right level. Then using Remark 4.35 we

deduce that vr;t
��1

r does not go to 0 to the right. This allows us to define the sets

S
r;t�

1 ; subspaces of S
r;t��1
1 ; as follows. For 1prpr�; let

S
r;t�

1 :¼ fGAS
r;t��1
1 : CðGÞ has a lower right level than vr;t

��1
r g:

(Observe that S0;t�

1 was already defined.)

Theorem 4.43. For 0prpr� and 0ptpt�; S
r;t
1 ¼ S

r;0
1 -S0;t

1 :

Proof. If r ¼ 0; then it is obvious that S0;t
1 ¼ S0;0

1 -S0;t
1 ; since S0;t

1 DS0;0
1 ð¼ S1Þ:

Thus, assume r40:

We first prove that S
r;t
1 DS

r;0
1 -S0;t

1 for 0orpr�; 0ptot�: To do this, consider

a spline GAS
r;t
1 : Then GAS

r�1;t
1 and g :¼ CðGÞ has a lower left level than v

r�1;t
r�1 :

Hence, Lemma 4.41 implies that g has a lower left level than v
r�1;0
r�1 ; and therefore g

has a lower left level than v
r0;0
r0 for r0 ¼ 0; 1;y; r� 1: So

GAS0;0
1 -S1;0

1 -?-S
r;0
1 ¼ S

r;0
1 :

On the other hand, by construction, S
r;t
1 CS0;t

1 : Thus, GAS
r;0
1 -S0;t

1 : Let us now

show that S
r;t�

1 DS
r;0
1 -S0;t�

1 for 0orpr�: Let GAS
r;t�

1 : Then GAS
r;t��1
1 and g

has a lower right level than vr;t
��1

r : Therefore, from (b1) applied to Vr;t��1
r we deduce

that g has a lower right level than v0;t��1
r ; and by (a) in Lemma 4.32 it also has a lower

right level than v
0;t��1
0 : Furthermore, applying the previous case we get

GAS
r;0
1 -S0;t��1

1 : Thus, GAS
r;0
1 -S0;t�

1 :

We now prove that S
r;0
1 -S0;t

1 DS
r;t
1 for 0orpr� and 0ptot�: Let

GAS
r;0
1 -S0;t

1 : Then, for r0 ¼ 0; 1;y; r� 1; the spline G is in S
r0;0
1 and g has a

lower left level than v
r0;0
r0 : Hence, Lemma 4.41 implies that g has a lower left level than
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v
r0;t
r0 : So GAS0;t

1 and g has a lower left level that v
r0;t
r0 for r0 ¼ 0; 1;y; r� 1:

Therefore,

GAS0;t
1 -S1;t

1 -?-S
r;t
1 ¼ S

r;t
1 :

Finally, we see that S
r;0
1 -S0;t�

1 DS
r;t�

1 for 0orpr�: To this end, consider a

GAS
r;0
1 -S0;t�

1 : Then GAS
r;0
1 -S0;t��1

1 ¼ S
r;t��1
1 ; where the equality holds because

we have just proved it. Moreover, g has a lower right level than v
0;t��1
0 : From (b1),

v0;t��1
r ; and therefore v

0;t��1
0 as well, has the same right level as vr;t

��1
r : So GAS

r;t��1
1

and g has a lower right level than vr;t
��1

r : Thus, GAS
r;t�

1 : This completes the proof of

the theorem. &

Corollary 4.44. The spline CðG1Þ goes to 0 to the right for every G1 in

S
r;t�

1 ; 0prpr�: The spline CðG2Þ goes to 0 to the left for every G2 in

S
r�;t
1 ; 0ptpt�: Hence, any G in S

r�;t�

1 goes to 0.

Proof. If G1 is in S
r;t�

1 ; 0prpr�; then G1AS0;t�

1 : On the other hand, we know that

v
0;t�

0 goes to 0 to the right. Then using (a) in Lemma 4.32 we deduce that CðG1Þ goes

to 0 to the right for every G1 in S
r;t�

1 CS0;t�

1 : The proof that CðG2Þ goes to 0 to the

left for every G2 in S
r�;t
1 ; 0ptpt�; is similar, and so we omit it. The last sentence of

the corollary is now obvious. &

Theorem 4.45. For 0prpr�; the set S
r;t�

1 is an ðm1 � t� � rÞ-dimensional WT-space.

Proof. In the case r ¼ 0 the result follows from Corollary 4.34. Thus, assume r40:

From (b1) with t ¼ t� � 1; for l ¼ r; rþ 1;y;m1 � t�; the spline v
r;t��1
l is

proportional to v0;t��1
l on ½xiþ

1
þr; bÞ: Hence, v

r;t��1
l and v0;t��1

l have the same right

level. Furthermore, from (a) in Lemma 4.32, v0;t��1
l has the same right level as v0;t��1

0 :

Then v
r;t��1
l does not go to 0 to the right because the same fact is valid for v

0;t��1
0 :

Accordingly, the splines vr;t
��1

r ; v
r;t��1
rþ1 ;y; v

r;t��1
m1�t� have the same right level, and they

do not go to 0 to the right. So we can use a similar procedure to that in the proof of

(a01) in Theorem 4.30. Indeed, as vr;t
��1

r does not go to 0 to the right, Theorem 4.26

shows that there exists limxmb ðgðxÞ=vr;t
��1

r ðxÞÞ; xeO; for all gACðS1Þ: Then it is

clear that S
r;t�

1 is a linear subspace of S
r;t��1
1 : Let

yr;t
��1

l :¼ lim
xmb
xeO

v
r;t��1
l ðxÞ

v
r;t��1
r ðxÞ

; l ¼ rþ 1; rþ 2;y;m1 � t�:

As vr;t
��1

r ; v
r;t��1
rþ1 ;y; v

r;t��1
m1�t� have the same right level, 0ojyr;t

��1
l joN: Hence,

v
r;t��1
l � yr;t

��1
l vr;t

��1
r has a lower right level than vr;t

��1
r : Moreover, it is easy to see
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that fV
r;t��1
l � yr;t

��1
l Vr;t��1

r gm1�t�
l¼rþ1 is linearly independent. Then S

r;t�

1 is precisely

the ðm1 � t� � rÞ-dimensional space spanned by this basis.

We now show that S
r;t�

1 is a WT-space for 1prpr�: Let GAS
r;t�

1 : Then G has at

most m1 � t� � r sign changes because S
r;t�

1 is a subspace of the ðm1 � t� � rþ 1Þ-
dimensional WT-space S

r;t��1
1 : Suppose first ror�: By Remark 4.42, vr;t

��1
r does

not go to 0 to the left. So by (b5) the spline vr;t
��1

r satisfies the assumptions on v in

Lemma 4.24. On the other hand, it follows from Corollary 4.44 that g :¼ CðGÞ goes
to 0 to the right. If G has m1 � t� � r sign changes, then Lemma 4.24(d) implies that

there exists a k large enough for which g � evr;t
��1

r has at least mk � t� � rþ 1 sign

changes on ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign. This

contradicts (b2) applied to G � eVr;t��1
r ; in S

r;t��1
1 : Therefore, we deduce that G has

at most m1 � t� � r� 1 sign changes. Thus, S
r;t�

1 is weak Chebyshev when ror�:

We finally prove that S
r�;t�

1 is weak Chebyshev. Assume to the contrary that

GAS
r�;t�

1 has m1 � t� � r� sign changes. For e1a0; let G1 :¼ G � e1V
r�;t��1
r� and

g1 :¼ CðG1Þ: As g goes to 0 and m1 � t� � r�40 (so Ga0), there exists i4iþ1 such

that ½xi; bÞ is a maximal zero interval of g: By Proposition 4.37, i4iþ1 þ r�:

Furthermore, by (b1), v
r�;t��1
r� is proportional to v

0;t��1
0 on ½xiþ

1
þr� ; bÞ; and therefore all

the zeros of v
r�;t��1
r� in ½xiþ

1
þr� ; bÞ are isolated and of multiplicity 1. We shall use this

fact, together with the assumption that G has m1 � t� � r� sign changes, in the

following reasoning. Since g goes to 0 and v
r�;t��1
r� goes to 0 to the left, it follows that

g1 goes to 0 to the left, and for an e1 sufficiently small and with a suitable sign, g1 has
either at least m1 � t� � r� þ 1 sign changes on ðxi1 ; x; 1

Þ or at least m1 � t� � r� sign

changes on ðxi1 ; x; 1
Þ and a simple zero in ðx; 1

; bÞ\O; depending on whether ½xi; bÞ is a

maximal zero interval of g with ip; 1; or i4; 1; respectively. Note that the first

alternative is not possible, since G1 is in the ðm1 � t� � r� þ 1Þ-dimensional WT-

space S
r�;t��1
1 : As v

r��1;t��1
r��1 satisfies the assumptions on v in Lemma 4.24, apply now

(c) in this lemma to conclude that there exists a k large enough for which g1 �
evr

��1;t��1
r��1 has at least mk � t� � r� þ 2 sign changes on ðxik ; x; k

Þ for all e sufficiently

small and with a suitable sign. This contradicts (b2) applied to G1 � eVr��1;t��1
r��1 ; in

S
r��1;t��1
1 : Thus, S

r�;t�

1 is weak Chebyshev. &

Theorem 4.46. Let GAS1 with the property that g :¼ CðGÞ has the same right level as

v0;t0

0 for some 0pt0pt� and the same left level as v
r0;0
r0 for some 0pr0pr�: If

H is in S
r0;t0

1 ; being r0Xr0 and t0Xt0; and g is in Lf; then also h :¼ CðHÞ is

in Lf:

Proof. As HAS
r0;t0

1 ; it follows from Theorem 4.43 that HAS
r0;0
1 -S0;t0

1 : Note that

S
r0;0
1 DS

r0;0
1 and S0;t0

1 DS0;t0

1 ; since r0Xr0 and t0Xt0: Then taking into account that
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g has the same right level as v0;t0

0 and the same left level as v
r0;0
r0 ; and using (a) in

Lemmas 4.32 and 4.38, we see that g does not have a lower right or left level than h:
Hence, it is easy to show that jhjpljgj on J\K0 for some constant l and some

compact interval K0CJ: Therefore,
R

J\K0
fðjhjÞp

R
J\K0

fðljgjÞ; since f is increasing.

As gALf; and Lf is a linear space,
R

J
fðljgjÞoN: On the other hand, it is clear

that
R

K0
fðjhjÞoN: Thus,

R
J
fðjhjÞoN; which proves the theorem. &

Lemma 4.47. If hASP\f0g satisfies hðzÞ ¼ 0 for all zAO; then h has at most one

maximal zero interval. Hence, there exists no HAS
r�;t�

1 \f0g for which O-ðxi1 ; x; 1
Þ is

an alternating set, whence

m1 � t� � r� � 1oOði1;; 1Þ:

Proof. Assume that there exists an hASP\f0g satisfying hðzÞ ¼ 0 for all zAO; and
with at least two maximal zero intervals. Then there exist indexes i0; j0AZ; i0oj0;

such that the restriction of h to ½xi0 ; xj0  is in S0
i0;j0

without zero intervals. Thus,

Oði0;j0ÞpZði0;j0ÞðhÞpj0 � i0 � n;

where the last inequality is due to Lemma 4.11(c). This contradicts that fu;Og is a
reference pair (Definition 4.18), which proves the first sentence of the lemma.

To prove the second statement in the lemma, suppose that there exists

HAS
r�;t�

1 \f0g such that O-ðxi1 ;x; 1
Þ is an alternating set for H: Then h :¼ CðHÞ

has at least two maximal zero intervals, since h goes to 0 (Corollary 4.44). Moreover,
as O-ðxi1 ; x; 1

Þ is an alternating set for H; using Theorem 4.19 we see that hðzÞ ¼ 0

for all zAO: This contradicts the stated above. In particular, this is the case if
m1 � t� � r� � 1XOði1;; 1Þ: Indeed, after applying [SSS] if m1 � t� � r� � 14Oði1;; 1Þ;

we can use [JKZ] in an ðOði1;; 1Þ þ 1Þ-dimensional WT-subspace of S
r�;t�

1 to obtain an

H0AS
r�;t�

1 \f0g for which O-ðxi1 ; x; 1
Þ is an alternating set. &

Now we shall deal with the spline u itself. Let U be the restriction of u to ½xi1 ; x; 1
:

By (3), UAS1; and from (3) and Theorem 4.19, u ¼ CðUÞ:

Lemma 4.48. There exist integers tðuÞ and rðuÞ; 0ptðuÞot�; 0prðuÞor�; such that

u has the same right level as v
0;tðuÞ
0 ; and the same left level as v

rðuÞ;0
rðuÞ : Moreover,

Oði1;; 1Þpm1 � tðuÞ � rðuÞ � 1:

Proof. As fu;Og is a reference pair, u does not go to 0 to the right, and therefore we
see that there exists tðuÞAZ satisfying 0ptðuÞot�; and such that u has the same right
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level as v
0;tðuÞ
0 : Likewise, as u does not go to 0 to the left, there exists rðuÞAZ;

satisfying 0prðuÞor�; and such that u has the same left level as v
rðuÞ;0
rðuÞ :

By (2), i1p� nonp; 1: So it is easy to see that there exists a unique spline

G1AS0
i1;; 1

such that G1 ¼ 1 on ½xi1þn�1; x; 1�nþ1: Furthermore, G140 on ðxi1 ; x; 1
Þ:

Then the following facts can be easily proved:

(i) For all e sufficiently small, the r simple zeros of U in ðxi1 ; x; 1
Þ produce r simple

zeros of Ue :¼ U � eG1 in ðxi1 ; x; 1
Þ:

(ii) For all e sufficiently small and with a suitable sign, the t double zeros of U in
ðxi1 ; x; 1

Þ produce at least t simple zeros of Ue in ðxi1 ; x; 1
Þ:

Moreover, taking e sufficiently small, all the simple zeros of Ue obtained in (i) and
(ii) are different. Thus, we can choose an ea0; small enough and with a suitable sign,
so that Ue has at least Zði1;; 1ÞðUÞ sign changes on ðxi1 ; x; 1

Þ: Then the number of sign

changes of Ue is not smaller than Oði1;; 1Þ; since by definition of

O; Zði1;; 1ÞðUÞXOði1;; 1Þ: On the other hand, ue :¼ CðUeÞ has the same level as u

because ue ¼ u on J\ðxi1 ; x; 1
Þ: Hence, ue has the same right level as v

0;tðuÞ
0 and the

same left level as v
rðuÞ;0
rðuÞ : Then we deduce that Ue is in S

rðuÞ;0
1 -S

0;tðuÞ
1 ¼ S

rðuÞ;tðuÞ
1 ;

where the equality is due to Theorem 4.43. In this way, as S
rðuÞ;tðuÞ
1 is an

ðm1 � rðuÞ � tðuÞÞ-dimensional WT-space (Corollary 4.40), and the number of sign
changes of Ue is not smaller than Oði1;; 1Þ; we conclude that

Oði1;; 1Þpm1 � tðuÞ � rðuÞ � 1: &

According to Lemmas 4.47 and 4.48,

m1 � t� � r� � 1oOði1;; 1Þpm1 � tðuÞ � rðuÞ � 1:

From now on, we shall denote by r0 and t0 any pair of integers satisfying

rðuÞpr0pr� and tðuÞpt0pt�;

m1 � t0 � r0 � 1 ¼ Oði1;; 1Þ:

(
ð13Þ

Note that r0 þ t0or� þ t�; since Oði1;; 1Þ4m1 � t� � r� � 1:

Lemma 4.49. Let r0 and t0 be integers satisfying the conditions in (13). To prove

Theorem 4.12 whenever fu;Og is a reference pair, it is sufficient to show that there

exists an H0AS
r0;t0

1 \f0g such that O is an alternating set for CðH0Þ:

Proof. Recall that O ¼ fzAJ: z is a simple zero of u�g; where u� is a continuous
function satisfying ju�j ¼ juj: Assume that O is an alternating set for h0 :¼ CðH0Þ;
where H0AS

r0;t0

1 \f0g: Then it is clear that either h0 or �h0 satisfies (a) and (b) of

Theorem 4.12. Let U be the restriction of u to ½xi1 ; x; 1
: As r0XrðuÞ and t0XtðuÞ;
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applying Theorem 4.46, with U in place of G and H0 in place of H; we see that (c) of
Theorem 4.12 also holds. &

By (13), m1 � t0 � r0 � 1 ¼ Oði1;; 1Þ: Then we can use Property [JKZ] in the

(m1 � t0 � r0)-dimensional WT-space S
r0;t0

1 to obtain an HAS
r0;t0

1 \f0g for which

O-ðxi1 ; x; 1
Þ is an alternating set. So, in view of Lemma 4.49, the problem is now to

prove that O is an alternating set for CðHÞ: This will be immediately achieved when
H has no zero interval.

Lemma 4.50. Let r0 and t0 be integers satisfying the conditions in (13). If O-ðxi1 ;x; 1
Þ

is an alternating set for H0; in S
r0;t0

1 and without zero interval, then O is an alternating

set for h0 :¼ CðH0Þ:

Proof. Let O-ðxi1 ; x; 1
Þ be an alternating set for H0AS

r0;t0

1 ; and assume that H0 has

no zero interval. By (13), m1 � t0 � r0 � 1 ¼ Oði1;; 1Þ: Therefore, H0 has m1 � t0 �
r0 � 1 sign changes. Suppose that h0 does not go to 0 to the right nor to the left.

Then, in particular, t0ot�; and so (b4) applied to H0AS
r0;t0

1 implies that h0 has no

double zero, and

fh0 ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ O-ðJ\ðxi1 ; x; 1

ÞÞ:

Thus, O is an alternating set for h0; and therefore the lemma holds in this case.
Assume now that h0 goes to 0 to the right. Then h0 has a maximal zero interval,

say ½xj; bÞ: By hypothesis, jX; 1: From Lemma 4.47, h0 does not go to 0 to the left,

and by Corollary 4.44, r0or�: Let t1 ¼ maxf0; t0 � 1g: Then V
r0;t1

0 is in S
r0;t1

1 and

so it satisfies the hypothesis on V in Lemma 4.24. If h0 has a double zero in ða; xjÞ; or

a simple zero in ða; xjÞ\O (note that h0 cannot have simple zeros in ðxi1 ; x; 1
Þ\O), then

applying Lemma 4.24 we deduce that there exists a k sufficiently large for which

h0 � evr0;t1

0 has at least mk � t0 � r0 þ 1 sign changes on ðxik ; x; k
Þ for all e sufficiently

small and with a suitable sign. This contradicts (b2) applied to H0 � eVr0;t1

0 ; in S
r0;t1

1 :

An analogous argument proceeds when h0 goes to 0 only to the left. So we conclude
that in every case O is an alternating set for h0: &

Remark 4.51. Let r0 and t0 be integers satisfying the conditions in (13). Then

applying Property [JKZ] in the ðm1 � t0 � r0Þ-dimensional WT-space S
r0;t0

1 we

obtain a spline HAS
r0;t0

1 \f0g for which O-ðxi1 ; x; 1
Þ is an alternating set. If H has

no zero interval, then it follows from Lemmas 4.49 and 4.50, with H0 :¼ H; that
Theorem 4.12 is true when fu;Og is a reference pair. Therefore, to complete the
proof of Theorem 4.12 whenever fu;Og is a reference pair, it remains to consider the
case in which the spline H has a zero interval. Note that in this situation it is not
possible to assure that O is an alternating set for CðHÞ: So, in order to apply Lemma
4.49 in this case, we shall need further results. The existence of H allows us to

observe that there exists an %HAS
r0;t0

1 \f0g for which O-ðxi1 ; x; 1
Þ is an alternating

set, and such that either %H coincides with H on ½xc0
; x; 1

; and ½xi1 ; xc0
 is a maximal
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zero interval of %H; i1oc0o;�1 ; or %H coincides with H on ½xi1 ; xc1
; and ½xc1

; x; 1
 is a

maximal zero interval of %H; iþ1 oc1o; 1: Without loss of generality, we shall treat the

first case. The other is completely symmetrical on its conditions, and therefore on its
treatment as well.

Definition 4.52. For each cAZ-ði1; ; 1Þ; and for every t ¼ 0; 1;y; t�; we define

Tt
c :¼ fGAS0;t

1 : ½xi1 ; xc is a zero interval of Gg:

It is clear that Tt
c is a linear subspace of S

r�;t
1 : We now claim that if ;�1 � c�

tp0; then Tt
c ¼ f0g: Indeed, this follows immediately if t ¼ 0 and c ¼ ;�1 : If t40

then Tt
cCS0;t

1 CS0;t�1
1 ; and (c) in Lemma 4.32 applied to S0;t�1

1 shows that every G

in S0;t�1
1 \f0g vanishing on ½xi1 ; x;�

1
�t is such that CðGÞ has the same right level as

v
0;t�1
0 : Hence, G cannot be in S0;t

1 *Tt
c; which proves the claim. In Theorem 4.55,

we shall prove that Tt
c is a ð;�1 � c� tÞ-dimensional WT-space whenever ;�1 � c�

t40:

Remark 4.53. Take points %y1o %y2o?o %ym1�1 in ðxi1 ; x;�
1
Þ in such a way that

%y1; %y2;y; %yn�1�sði1Þ are in ðxi1 ; xi1þ1Þ; and %yk is in ðxk�nþiþ
1
þ1; xk�nþiþ

1
þ2Þ; k ¼ n �

sði1Þ;y;m1 � 1: For t ¼ 0; 1;y; t� � 1; consider the set f %ykgm1�t�1
k¼1 in ðxi1 ; x;�

1
�tÞ:

Using Property [JKZ] in the ðm1 � tÞ-dimensional WT-space S0;t
1 we obtain

Q tAS0;t
1 \f0g for which f %ykgm1�t�1

k¼1 is an alternating set. If Q t has a zero interval in

½xi1 ; x;�
1
�t; then the location of the points %y1; %y2;y; %ym1�t�1 implies that ½xi1 ; x;�

1
�t

has to be a zero interval of Q t; but this is not possible because of Proposition 4.31.
Then for t ¼ 0; 1;y; t� � 1; Q t has no zero interval in ½xi1 ; x;�

1
�t; whence it has

m1 � t� 1 sign changes on ðxi1 ; x; 1
Þ: Then from (b) in Lemma 4.32 applied to

Q tAS0;t
1 ; qt has the same right level as v0;t

0 ; and therefore qt does not go to 0 to the

right. Analogously, from (b) in Lemma 4.38 applied to Q tAS0;t
1 ; qt has the same left

level as v0;t
0 ; and therefore qt does not go to 0 to the left. As a consequence of all these

results, from Proposition 4.31 and Lemma 4.23 it is easy to see that qt has no zero

interval. Furthermore, (a4) of Theorem 4.30 applied to Q tAS0;t
1 implies that qt has

no double zero and

fqt ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ O-ðJ\ðxi1 ; x; 1

ÞÞ:

Thus, qt has mk � t� 1 simple zeros in ðxik ; x; k
Þ for every kAN: We now assert that

all the zeros of qt have multiplicity one. In the case t ¼ 0; the assertion follows from

Lemma 3.21 applied to Q0: Assuming that the assertion holds for t� 1; being tX1;
we will prove it for t: Note that by construction, the zeros of Qt are also zeros of

Qt�1; and moreover, the zeros of qt are zeros of qt�1; since

fqt ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ fqt�1 ¼ 0g-ðJ\ðxi1 ; x; 1

ÞÞ ¼ O-ðJ\ðxi1 ; x; 1
ÞÞ:
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Thus, if qt has a zero of odd multiplicity greater than 2 at a point z; then it is easy to

see that for all e sufficiently small and with a suitable sign, qt � eqt�1 has at least
three simple zeros, say z1ðeÞ ¼ z; z2ðeÞ and z3ðeÞ; with z2ðeÞmz and z3ðeÞkz as e-0:

Let kAZ such that zAðxik ; x; k
Þ: Then qt � eqt�1 would have at least mk � tþ 1

simple zeros in ðxik ; x; k
Þ for all e sufficiently small and with a suitable sign, which

contradicts (a2) applied to Qt � eQt�1; in S0;t�1
1 : Thus, the assertion is proved.

Summarizing, for t ¼ 0; 1;y; t� � 1; we have proved that there exists a QtAS0;t
1

such that the following properties hold:

* Qt has m1 � t� 1 sign changes on ðxi1 ; x;�
1
�tÞ

* qt has the same right level as v
0;t
0

* all the zeros of qt are isolated and of multiplicity 1, and

fqt ¼ 0g-ðJ\ðxi1 ; x; 1
ÞÞ ¼ O-ðJ\ðxi1 ; x; 1

ÞÞ:

Lemma 4.54. Assume that G0 is in Tt
c\f0g with ;�1 � c� t� 1 sign changes,

i1oco; 1; 0ptpt� � 1: Then the following properties hold:

(a) g0 :¼ CðG0Þ has neither double zeros nor zero intervals in ðxc; bÞ; and

fg0 ¼ 0g-½x; 1
; bÞ ¼ O-½x; 1

; bÞ:

(b) g0 has the same right level as v0;t
0 :

Proof. Let G0 be as in the statement of the lemma. Observe that ;�1 � c� t40; since

G0ATt
c\f0g: Note also that ½xi1 ; xc is a zero interval of G0: Suppose that ½xi1 ; xj is a

zero interval of G0; cpjpcþ 1: By construction, Qt has n � 1 � sði1Þ þ j � i1 � 1 ¼
j � iþ1 þ n � 2 sign changes on ðxi1 ; xjÞ: Then since G0 has ;�1 � c� t� 1 sign

changes and ½xi1 ; xj is a zero interval of G0; the spline G0 � eQt has at least ð j �
iþ1 þ n � 2Þ þ ð;�1 � c� t� 1Þ þ 1 ¼ m1 � t� 1 þ j � c sign changes for all e
sufficiently small and with a suitable sign. Then we deduce that j ¼ c necessarily.

Otherwise (a2) applied to G0 � eQtAS0;t
1 is contradicted. Thus, ½xi1 ; xc is a maximal

zero interval of G0:
Now, with similar proofs to those of Claims 2 and 3 in Lemma 4.32(c), we below

deduce Claims 1 and 2, respectively. We only remark that v
0;t
0 ; used in Lemma 4.32,

must be here replaced by qt:

Claim 1. For all e sufficiently small, g0 � eqt has no double zero, and

fg0 � eqt ¼ 0g-ðJ \ðxi1 ; x; 1
ÞÞ ¼ O-ðJ \ðxi1 ; x; 1

ÞÞ:
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Claim 2. The spline g0 has no zero interval in ½xc; bÞ:

Taking into account Claim 2, to prove (a) it remains to show that g0 has no double
zero in ðxc; bÞ; and that g0 has no simple zero in ½x; 1

; bÞ\O: Assume first that g0 has a

double zero in ðxc; x; 1
Þ: Then it is easy to see that we can choose ea0; small enough

and with a suitable sign, so that g0 � eqt has

ðc� iþ1 þ n � 2Þ þ ð;�1 � t� c� 1Þ þ 2 ¼ m1 � t

sign changes on ðxi1 ; x; 1
Þ: This is a contradiction, because G0 � eQt is in the

ðm1 � tÞ-dimensional WT-space S0;t
1 : Thus, g0 has no double zero in ðxc; x; 1

Þ:
Suppose now that g0 has a double zero in ½x; 1

; bÞ: Then it is not difficult to see that

for all ea0; small enough and with a suitable sign, g0 � eqt has at least a simple zero
in ðx; 1

; bÞ\O: This contradicts Claim 1. In consequence, g0 has no double zero in

ðxc; bÞ: Finally, if g0 has a simple zero in ½x; 1
; bÞ\O; then g0 � eqt has a simple zero in

½x; 1
; bÞ\O for all e sufficiently small, and Claim 1 is again contradicted. This

completes the proof of (a).
We now prove (b). We have shown that g0; qt (see Remark 4.53), and g0 � eqt for

all e sufficiently small, have no double zero and

fqt ¼ 0g-½x; 1
; bÞ ¼ fg0 � eqt ¼ 0g-½x; 1

; bÞ

¼ fg0 ¼ 0g-½x; 1
; bÞ ¼ O-½x; 1

; bÞ:

Accordingly, Lemma 4.28(a) shows that g0 does not have a lower right level than qt:

Then we deduce that g0 does not have a lower right level than v
0;t
0 ; because qt has the

same right level as v
0;t
0 (Remark 4.53). Finally, using (a) in Lemma 4.32, we conclude

that g0 has the same right level as v0;t
0 : &

Theorem 4.55. For every t ¼ 0; 1;y; t�; the set Tt
c is a ð;�1 � c� tÞ-dimensional

WT-space whenever ;�1 � c� t40:

Proof. The proof is by induction on t: Observe first that the space T0
c can be

identified with Sþ
c;;�

1
; and therefore T0

c is indeed a ð;�1 � cÞ-dimensional WT-space

whenever ;�1 � c40: Thus, assume 0ptominft�; ;�1 � c� 1g and suppose that Tt
c

is a ð;�1 � c� tÞ-dimensional WT-space.

In Remark 4.53 we took points %y1o %y2o?o %ym1�1 in ðxi1 ; x;�
1
Þ in such a way that

%y1; %y2;y; %yn�1�sði1Þ are in the component ðxi1 ; xi1þ1Þ; and %yk is in the component

ðxk�nþiþ
1
þ1; xk�nþiþ

1
þ2Þ; k ¼ n � sði1Þ;y;m1 � 1: So for each t ¼ 1; 2;y; t�; the set

f %ykgm1�t�1
m1�ð;�

1
�c�1Þ is contained in ðxcþ1; x;�

1
�tÞ: For k ¼ m1 � ð;�1 � c� 1Þ;y;m1 �

t� 1; we now consider points %y0
k so that %y0

ka %yk and %y0
k is in the same component in

which %yk is. Now, for l ¼ m1 � ð;�1 � cÞ;y;m1 � t� 1; let %yl
k :¼ %yk if kal; and

%yl
l :¼ %y0

l : Using Property [JKZ] in the WT-space Tt
c we obtain W t

l in Tt
c\f0g for

which f %yl
kg

m1�t�1
k¼m1�ð;�

1
�c�1Þ is an alternating set. We assert that W t

l has no zero interval
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in ½xc; x;�
1
�t: Assume to the contrary that for some l0; W t

l0 has a zero interval in

½xc; x;�
1
�t: Then the location of the points %yl0

k implies that ½xc; x;�
1
�t is a zero interval

of W t
l0 ; and therefore W t

l0 vanishes identically on ½xi1 ; x;�
1
�t: As W t

l0 is in Tt
cCS0;t

1 ;

Proposition 4.31 applied to W t
l0AS0;t

1 shows that W t
l0 vanishes identically on

½xi1 ; x; 1
; which is a contradiction. This proves the assertion. Then for every l; W t

l

changes sign at each %yl
k; k ¼ m1 � ð;�1 � c� 1Þ;y;m1 � t� 1: As the restriction of

W t
l to ½xc; x;�

1
�t is in Sþ

c;;�
1
�t; it follows from Lemma 4.11(b) that the ;�1 � t� c� 1

points in f %yl
kg

m1�t�1
k¼m1�ð;�

1
�c�1Þ are the only zeros (of multiplicity 1) of W t

l in ðxc; x;�
1
�t:

Therefore, the replacement method employed in the construction of fW t
l g

m1�t�1
l¼m1�ð;�

1
�cÞ

insures that this set is linearly independent in Tt
c; and thus fW t

l g
m1�t�1
l¼m1�ð;�

1
�cÞ is a basis

for the ð;�1 � c� tÞ-dimensional WT-space Tt
c: For l ¼ m1 � ð;�1 � cÞ;y;m1 �

t� 1; applying now Lemma 4.54(b) to W t
l ; in Tt

c\f0g and with ;�1 � c� t� 1 sign

changes, we see that wt
l :¼ CðW t

l Þ has the same right level as v
0;t
0 : Then wt

l does not

go to 0 to the right, since tot�: Accordingly, there exists

ytl :¼ lim
xmb
xeO

wt
l ðxÞ

wt
m1�t�1ðxÞ

; l ¼ m1 � ð;�1 � cÞ;y;m1 � t� 2;

and 0ojytl joN: Hence, each W t
l � ytl W

t
m1�t�1 is in Ttþ1

c : Moreover, it is easily seen

that

fW t
l � ytl W t

m1�t�1g
m1�t�2
l¼m1�ð;�

1
�cÞ

is linearly independent. Consequently, Ttþ1
c is precisely the ð;�1 � c� t� 1Þ-

dimensional space spanned by this basis. We now prove that Ttþ1
c is weak

Chebyshev. To do this, let GATtþ1
c CTt

c: By the inductive hypothesis, Tt
c is a

ð;�1 � c� tÞ-dimensional WT-space. Then G has at most ;�1 � c� t� 1 sign

changes. On the other hand, CðGÞ has a lower right level than v0;t
0 : Then from

Lemma 4.54(b), G has at most ;�1 � c� t� 2 sign changes. So Ttþ1
c is weak

Chebyshev. &

Lemma 4.56. Assume that G is in Tt
c without zero intervals in ½xc; x; 1

; i1oco; 1;

0ptpt� � 1: Then

Zðc;; 1ÞðGÞp;�1 � c� t� 1:

Proof. Let G be as in the statement of the lemma, and consider the spline
QtATt

c\f0g introduced in Remark 4.53. As all the zeros of Qt have multiplicity one

and Qt has c� iþ1 þ n � 2 simple zeros in ðxi1 ; xcÞ; the following facts can be easily

checked:

(i) For all e; the spline G � eQt has c� iþ1 þ n � 2 simple zeros in ðxi1 ; xcÞ:
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(ii) For all e sufficiently small and with a suitable sign, G � eQt has a simple zero
zðeÞAðxc; xcþ1Þ; being zðeÞkxc as e-0:

(iii) For all e sufficiently small, each simple zero of G produces a simple zero of
G � eQt:

(iv) The t double zeros of G produce either t simple zeros of G � eQt for all e
sufficiently small or at least t þ 1 simple zeros of G � eQt for all e sufficiently
small and with a suitable sign.

Moreover, it is clear that for e sufficiently small, all the zeros of G � eQt obtained
in (i)–(iv) are different. Accordingly, it is easy to check that we can take ea0; small
enough and with a suitable sign, so that G � eQt has at least

c� iþ1 þ n � 2 þ 1 þ Zðc;; 1ÞðGÞ

simple zeros. Hence,

c� iþ1 þ n � 1 þ Zðc;; 1ÞðGÞpm1 � t� 1;

since G � eQt is in the ðm1 � tÞ-dimensional WT-space S0;t
1 : Thus,

Zðc;; 1ÞðGÞpm1 � t� 1 � ðc� iþ1 þ n � 1Þ ¼ ;�1 � c� t� 1: &

4.3. Proof that the spaces SP and SP-Lf satisfy Property A

We are finally in a position to prove Theorem 4.12.

Proof of Theorem 4.12. Recall that the case n ¼ 2 was proved in Theorem 4.20. So
we suppose nX3: From Lemmas 4.13 and 4.14, the proof of Theorem 4.12 is reduced
to the case in which G ¼ Z and u has at most one maximal zero interval.

Assume first that u has no zero interval, and let O be the set of simple zeros of u�:
Lemma 4.15 shows that if there exist indexes i; jAZ such that Oði;jÞoj � i � n þ 1;

then Theorem 4.12 holds. Hence, we suppose Oði;jÞXj � i � n þ 1 for each ioj: Thus,

we are assuming that fu;Og is a reference pair.

Claim 1. Theorem 4.12 holds when fu;Og is a reference pair.

From Lemma 4.49 it follows that in order to prove Theorem 4.12 in this case, it is

sufficient to demonstrate that there exists an H0AS
r0;t0

1 \f0g such that O is an

alternating set for CðH0Þ; where r0 and t0 satisfy the conditions in (13). We now

prove the existence of such a spline H0AS
r0;t0

1 \f0g: Taking into account (13), we

apply Property [JKZ] in the ðm1 � t0 � r0Þ-dimensional WT-space S
r0;t0

1 to obtain

an HAS
r0;t0

1 \f0g for which O-ðxi1 ; x; 1
Þ is an alternating set. There are two cases to

consider:
First Case. The spline H has no zero interval. In this case take H0 :¼ H: Then from

Lemma 4.50, O is an alternating set for CðH0Þ: Thus, Claim 1 is proved in this case.
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Second Case. The spline H has a zero interval. In this case, according to Remark

4.51, we consider an %HAS
r0;t0

1 \f0g for which O-ðxi1 ; x; 1
Þ is an alternating set, and

such that %H coincides with H on ½xc0
; x; 1

; and ½xi1 ; xc0
 is a maximal zero interval of

%H; i1oc0o;�1 : Then %H is actually in Tt0

c0
\f0gCS

r0;t0

1 : Moreover, using Lemma 4.47

we deduce that ða; xc0
 is the only maximal zero interval of %h :¼ Cð %HÞ; whence

t0ot�:
Assume that %H has ;�1 � c0 � t0 � 1 sign changes. Then applying Lemma 4.54(a)

to %HATt0

c0
\f0g we see that %h has neither double zeros nor zero intervals in ðxc0

; bÞ;
and f %h ¼ 0g-½x; 1

; bÞ ¼ O-½x; 1
; bÞ: So, taking into account that O-ðxi1 ; x; 1

Þ is an

alternating set for %H; we conclude that O is an alternating set for %h: Then in this

situation take H0 ¼ %H; and Claim 1 is proved.

Assume now that %H does not have ;�1 � c0 � t0 � 1 sign changes. Under this

condition, we will show the existence of an H0AT
t0
0

c0
\f0g; t0ot00ot�; with ;�1 �

c0 � t00 � 1 sign changes. In this manner, we will be able to apply again Lemma 4.54,

this time to H0AT
t0
0

c0
CS

r0;t0

1 ; to complete the proof of the claim. Note that %H has

Oðc0;; 1Þ sign changes on ðxc0
; x; 1

Þ; since %H has no zero interval in ½xc0
; x; 1

: Then, as

Tt0

c0
is a ð;�1 � c0 � t0Þ-dimensional WT-space, we are assuming that

Oðc0;; 1Þo;�1 � c0 � t0 � 1:

We now prove that ;�1 � c0 � t� � 1oOðc0;; 1Þ: Suppose to the contrary that (0p)

Oðc0;; 1Þp;�1 � c0 � t� � 1: Therefore, after applying [SSS] if Oðc0;; 1Þo;�1 � c0 � t� �
1; we use Property [JKZ] in an ðOðc0;; 1Þ þ 1Þ-dimensional WT-subspace of Tt�

c0
to

obtain a nontrivial spline in Tt�
c0
CS

r�;t�

1 for which O-ðxi1 ; x; 1
Þ is an alternating set.

This contradicts Lemma 4.47. Therefore, ;�1 � c0 � t� � 1oOðc0;; 1Þ; and so we get

;�1 � c0 � t� � 1oOðc0;; 1Þo;�1 � c0 � t0 � 1: Hence, there exists an integer t00 such

that

Oðc0;; 1Þ ¼ ;�1 � c0 � t00 � 1;

with t0ot00ot�: Then we can use Property [JKZ] in the ð;�1 � c0 � t00Þ-dimensional

WT-space T
t0
0

c0
to obtain an H0AT

t0
0

c0
\f0g for which O-ðxi1 ; x; 1

Þ is an alternating

set.

Assertion. The spline H0 has no zero interval in ½xc0
; x; 1

:

Assume, contrary to our assertion, that H0 has a zero interval in ½xc0
; x; 1

: By

Lemma 4.47, H0 cannot have two maximal zero intervals, since O-ðxi1 ; x; 1
Þ is an

alternating set for H0: Hence, we are assuming that there exists an integer c1

satisfying c0 þ 1pc1p;�1 � 1 and such that H0 is in T
t0
0

c1
without zero interval in

½xc1
; x; 1

: Consider again the spline %H; in Tt0

c0
: As %H has no zero intervals in ½xc0

; x; 1
;
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the restriction of %H to ½xc0
; xc1

 is in Sþ
c0;c1

and has no zero interval. Then

Oðc0;c1pZðc0;c1ð %HÞpc1 � c0 � 1;

where the last inequality is due to Lemma 4.11(b). Therefore,

Oðc1;; 1Þ ¼ Oðc0;; 1Þ � Oðc0;c1

X;�1 � c0 � t00 � 1 � ðc1 � c0 � 1Þ ¼ ;�1 � c1 � t00:

As O-ðxc1
; x; 1

Þ is an alternating set for H0; and H0 has no zero interval in ðxc1
; x; 1

Þ;
we conclude that H0; in T

t0
0

c1
; has at least ;�1 � c1 � t00 sign changes. This contradicts

Theorem 4.55 applied to T
t0
0

c1
: So the assertion is proved.

Taking into account that O-ðxc0
; x; 1

Þ is an alternating set for H0AT
t0
0

c0
; that H0

has no zero interval in ½xc0
; x; 1

 and that Oðc0;; 1Þ ¼ ;�1 � c0 � t00 � 1; we deduce that

H0 has ; 1 � c0 � t00 � 1 sign changes. Then from Lemma 4.54(a) applied to

H0AT
t0
0

c0
\f0g we conclude that h0 :¼ CðH0Þ has neither double zeros nor zero

intervals in ½xc0
; bÞ; and

fh0 ¼ 0g-½xc0
; bÞ ¼ O-½xc0

; bÞ:

Accordingly, under the present assumption on %H we have also proved that there

exists a nontrivial spline H0 in T
t0
0

c0
CS

r0;t0

1 such that O is an alternating set for

h0 ð¼ CðH0ÞÞ: This completes the proof of Claim 1.
Observe that it only remains to prove the theorem for the case in which G ¼ Z and

u has exactly one maximal zero interval. Thus, the following claim completes the
proof of Theorem 4.12.

Claim 2. Theorem 4.12 holds when G ¼ Z and u has exactly one maximal zero interval.

It is obvious that by arguments of symmetry we can assume that the maximal zero
interval of u is not of the form ½xj; bÞ for any jAZ: Under this assumption, ½xi; xiþ1 is
a maximal zero interval of uj½xi ;bÞ for some iAZ: We will next find an h0 that makes

Theorem 4.12 to hold and that it vanishes on ða; xiþ1 independently of the form of u

on ða; xiÞ: Therefore, we can suppose without loss of generality that ða;x0 is a
maximal zero interval of u:

For iA�N; take one point zi in each ðxi�1; xiÞ: It is easily seen that there exists a
u0ASP without zero intervals, and without double zeros in ða; x�1; and such that
u0 ¼ u on ½x0; bÞ and u0ðziÞ ¼ 0; all iA�N: It is easy to check that z�1; z�2;y are

the only zeros of u0 in ða; x0Þ: In particular, sði1Þ ¼ 0 and iþ1 ¼ i1: Set u�
0 ¼ u� on

½x0; bÞ; and on ða; x0Þ take u�
0 ¼ u0; or u�

0 ¼ �u0; where the sign is chosen so that x0

becomes a simple zero of u�
0: Let O :¼ fzAJ: z is a simple zero of u�

0g: We assume

CardðO-ðxi; xjÞÞXj � i � n þ 1 for all 0pioj;

since otherwise we would use Property A in S0
i;j to obtain a straightforward proof of

Theorem 4.12. Under these conditions, fu0;Og becomes a reference pair, and
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therefore we will next apply Claim 1 to that reference pair. As u0 ¼ u on ½x0; bÞ and u

does not go to 0 to the right, it follows that both u and u0 have the same right level as

v
0;tðu0Þ
0 for some integer tðu0Þ satisfying 0ptðu0Þot�: Let U0 and U be the restrictions

of u0 and u to ½xi1 ; x; 1
; respectively. Then U0AS

rðu0Þ;tðu0Þ
1 \f0g and UAT

tðu0Þ
0 \f0g (in

fact, rðu0Þ ¼ 0 but this does not matter). As U has no zero intervals in ½x0; x; 1
; it

follows that Oð0;; 1ÞpZð0;; 1ÞðUÞ: Then from Lemma 4.56 applied to U ; we get

Oð0;; 1ÞpZð0;; 1ÞðUÞp;�1 � tðu0Þ � 1:

On the other hand, it is easy to see that Oði1;; 1Þ ¼ �i1 þ Oð0;; 1Þ: We now choose r0

and t0 satisfying the second condition in (13). Take r0 ¼ r�: Due to the location of
the points zi in ða;xi1  it follows easily that r� ¼ n � 1: From Lemma 4.47, m1 �
t� � r� � 1oOði1;; 1Þ: Thus, pick an integer t0ot� such that m1 � t0 � r� � 1 ¼
Oði1;; 1Þ: Then we have

;�1 � i1 � t0 � 1 ¼ ;�1 � i1 þ n � 1 � t0 � r� � 1 ¼ �i1 þ Oð0;; 1Þ:

Therefore, ;�1 � t0 � 1 ¼ Oð0;; 1Þ: Thus t0Xtðu0Þ; and obviously, r�Xrðu0Þ: Accord-

ingly, (13) holds with r0 ¼ r�; and t0 (and with u0 in place of u). Now, as ;�1 �
t0 � 1 ¼ Oð0;; 1Þ and Tt0

0 is a ð;�1 � t0Þ-dimensional WT-space, using Property [JKZ]

we see that there exists a nontrivial H in that space for which O-ð0; x; 1
Þ is an

alternating set. Hence, O-ðxi1 ; x; 1
Þ is also an alternating set for HATt0

0 CS
r�;t0

1 : At

this point we apply the second case in Claim 1 to obtain an h0 satisfying (a)–(c) of
Theorem 4.12 for the function u�

0: Observe that h0 ¼ 0 on ða; x0: Then it is

immediate to see that h0 also satisfies (a)–(c) of Theorem 4.12 for the function u�:
This completes the proof of Claim 2. &

Theorem 4.12 shows that SP-Lf satisfies Property A. From Theorem 3.3 we

therefore conclude the following result.

Uniqueness theorem. Let f be a convex function defined on ½0;NÞ; with fð0Þ ¼ 0 and

fðyÞ40 for y40; and also assume that f satisfies Property D2: Let J denote an open

interval and let f be a continuous function in Lf: Then there exists a unique g0ASP

such thatZ
J

fðj f � g0jÞp
Z

J

fðj f � gjÞ for every gASP:

Example. For J ¼ ð�N;þNÞ and n ¼ 3 we will construct a u0 in SP\L1 with
infinitely many isolated zeros. Applying to u0 the procedure expounded in the proof
of Theorem 4.12 we will obtain an h0ASP; also with infinitely many isolated zeros,
and with a lower right and left level than u0: We will prove that h0 is in L1; which
shows the effective action of the levels. We emphasize that the proof of existence of
this kind of splines in L1 is an interesting application of the theory of levels.

ARTICLE IN PRESS
A. Damas, M. Marano / Journal of Approximation Theory 126 (2004) 60–113 109



Let J ¼ ð�N;þNÞ and n ¼ 3; and let P ¼ fxigiAZ; where xi ¼ i for all iAZ: For

every integer iX1; let us denote by zi the middle point of the interval ½xi; xiþ1; and let

z�i ¼ �zi and z0 ¼ x0: It is easy to see that the restriction of the function x2 to ½�1; 1
can be extended to an even function u0ASP in such a way that the only zeros of u0

are the points fzigiAZ and where z0 is the only double zero of u0: Set O :¼ fzigiAZ:
Then fu0;Og is a reference pair. For each nAN; let in :¼ �n� 2 and ; n :¼ nþ 2:

Therefore, the sequences fingnAN and f; ngnAN satisfy (2)–(5), and so we can apply the

theory developed in the proof of Theorem 4.12. Observe that for all nAN; the
ð6 þ 2nÞ-dimensional WT-space Sn coincides with S�n�2;nþ2; since u0ðxinÞa0 and

u0ðx; n
Þa0: Moreover, it is not difficult to see that there are nine WT-spaces S

r;t
1 ;

0ptpt� ¼ 2 and 0prpr� ¼ 2; being S0;0
1 ¼ S1 ¼ S�3;3; S0;2

1 ¼ S�
�3;3; S2;0

1 ¼
Sþ

�3;3 and S2;2
1 ¼ S0

�3;3:

We claim that u0 has the same right and left levels as v0;0
0 ð¼ CðV0ÞÞ; where V0 is in

the basis for S0;0
1 introduced in Remark 4.29. Observe that V0 is an odd spline—and

hence v0;0
0 as well—if we choose, as we do, a symmetric set for its seven zeros yk:

Define GAT0
0 as G ¼ 0 on ½�3; 0 and GðxÞ ¼ U0ðxÞ for all xA½0; 3; where U0 is the

restriction of u0 to ½�3; 3: Since G has two sign changes, G cannot be in the 2-

dimensional WT-space T1
0: Then CðGÞ has the same right level as v

0;0
0 ; and the same

fact is valid for u0 because u0 ¼ CðGÞ on ½0;þNÞ: By arguments of symmetry we

deduce that u0 has the same left level as v
0;0
0 ; and this proves the claim.

We now see that u0eL1: To do this, consider the broken line q defined on
ð�N;þNÞ in such a way that qðxÞ ¼ jxj for all xA½�1; 1 and qðziÞ ¼ 0 for every
iAZ: It is not difficult to see that jqjoju0j on ðð�N;þNÞ\½�1; 1Þ\O: ThenRþN

�N
ju0j ¼ N; since

RþN

1 jqj ¼ N: Thus, we conclude that u0eL1:

We have just seen that u0 has the same right and left level as v0;0
0 and that u0eL1:

So, in order to show the effective action of levels on CðS1Þ; our aim is now to prove

that if HAS1;1
1 ; then CðHÞAL1: As CardðO-ð�3; 3ÞÞ ¼ 5; we can apply Property

[JKZ] in the 6-dimensional WT-space S1;1
1 to obtain an H0AS1;1

1 \f0g for which

O-ð�3; 3Þ is an alternating set. Note that H0 has no zero interval, since otherwise

either H0 or H0ð�xÞ would be in the 2-dimensional WT-space T1
0; with two sign

changes, which is not possible. Therefore, H0 has five sign changes. By the location
of the points zi we see that h0 :¼ CðH0Þ does not go to 0 to the right nor to the left.

We can thus apply (b4) of Theorem 4.36 to H0AS1;1
1 : It follows that the points in O

are the only (simple) zeros of h0: Observe that H0 is uniquely determined up to a
multiplicity constant. In particular, this implies that H0 is an odd function, and
hence h0 as well. We now prove the following assertion.

Assertion 1. The broken line h0
0 has a simple zero in each ðxi; xiþ1Þ; all iAZ:

From (b4) of Theorem 4.36 applied to H0AS1;1
1 ; h0

0 has at least one zero in

½xi; xiþ1; all iAZ: From this condition and by the location of the zeros of h0; we see
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that the broken line h0
0 has no zero interval. Therefore, h0

0 has exactly one zero in

each component ½xi; xiþ1; iAZ: Hence, to prove the assertion it remains to show that
h0

0 has no zero at the knots xi for any iAZ:
Suppose first that h0

0 has a double zero at a knot xl for some lAZ: If l40; then h0
0

has at most l � 2 sign changes on ðx0; xlþ1Þ: Therefore, applying Lemma 4.8 to the
restriction of h0

0 to ðx0; xlþ1Þ we obtain a contradiction, since h0 has l simple zeros in

½x0; xlþ1: Obviously, the same argument is valid when lo0: Thus, h0
0 has no double

zero at the knots xi for any ia0: Finally, if h0
0 has a double zero at x0; then it is not

difficult to see that there exists a constant l such that h0 ¼ lu0 on ðx0;þNÞ and

h0 ¼ �lu0 on ð�N; x0Þ: This contradicts that H0AS1;1
1 ; since U0eS1;1

1 :

Assume now that h0
0 has a simple zero at a knot xi0 for some i0AZ: As h0 is an odd

function, we see that i0a0 and that h0
0 has also a simple zero at the knot x�i0 : Suppose

i040: Thus, for all e sufficiently small the following two conditions hold:

* The broken line ðh0 � ev0;0
0 Þ0 has at most 2j � 2 sign changes on ðx�j ; xjÞ for every

j4i0:
* The spline h0 � ev0;0

0 has at least five sign changes on ð�3; 3Þ:

Note that for all e; the spline h0 � ev0;0
0 has no zero interval in ð3;þNÞ: Otherwise we

would conclude that h0 � ev0;0
0 ¼ 0 on ð3;þNÞ; which is a contradiction because the

right levels of h0 and v
0;0
0 are different. In the same way h0 � ev0;0

0 has no zero interval

in ð�N;�3Þ: Take an integer r4maxfi0; 3g: Then since ðh0 � ev0;0
0 ÞðzjÞ ¼ 0 for each

jX3; using the second condition above we deduce that for all e sufficiently small,

Z2
½x�r;xrðh0 � ev0;0

0 ÞX5 þ CardðO-ð½x�r; xr\ð�3; 3ÞÞ ¼ 5 þ 2r � 6: So taking into

account the first of the two conditions above and using Lemma 4.8 we get

Z2
½x�r;xrðh0 � ev0;0

0 Þ ¼ 5 þ CardðO-ð½x�r; xr\ð�3; 3ÞÞ: We conclude that for all e

sufficiently small, h0 � ev0;0
0 has no double zero, and

fh0 � ev0;0
0 ¼ 0g-ðJ \ð�3; 3ÞÞ ¼ O-ðJ \ð�3; 3ÞÞ:

On the other hand, applying (b4) of Theorem 4.36 to H0AS1;1
1 and to V

0;0
0 AS0;0

1 we

deduce that h0 and v
0;0
0 have no double zero and

fh0 ¼ 0g-ðJ \ð�3; 3ÞÞ ¼ fv0;0
0 ¼ 0g-ðJ \ð�3; 3ÞÞ ¼ O-ðJ \ð�3; 3ÞÞ:

Accordingly, apply Lemma 4.28(c) to h0 and v0;0
0 to deduce that h0 does not have a

lower right or left level than v0;0
0 : This contradicts that H0AS1;1

1 : Thus, h0
0 has no

simple zero at the knots xi for any iAZ; which completes the proof of the assertion.
In accordance with Assertion 1, for any integer iX0 let ci be the simple zero of h0

0

in the interval ðxi; xiþ1Þ:
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Assertion 2. For each integer iX0;

zi þ xiþ1

2
ocioxiþ1:

To prove the assertion, observe first that by definition of ci; we have cioxiþ1 for
each integer iX0: Recall also that the points in O are the only (simple) zeros of h0:
Without loss of generality, assume h040 on ðx0; x1: Therefore, h00 is decreasing in

the interval ½x0; x1; since h0
0ð0Þ40 and h0

0 has a simple zero c0 in ðx0; x1Þ: Moreover,

c04ðx0 þ x1Þ=2: Otherwise h0 would have a zero in ðx0; x1: This proves the assertion
for i ¼ 0 because z0 ¼ x0: As h040 on ðx0; z1Þ and h0

0o0 on ðc0; c1Þ; we deduce that

h0
0o0 on ðx1; z1Þ: Furthermore, h0

0ðz1Þo0; since z1 is a simple zero of h0: Therefore,

c14z1: Suppose now c1pðz1 þ x2Þ=2: As h0ðz1Þ ¼ 0; we get h0ðxÞ ¼
R x

z1
h0

0 for all

xA½z1; x2: Then we see that h0 has a zero at a point in ðz1; x2; which is a
contradiction. Thus, c14ðz1 þ x2Þ=2: Now, as h0o0 on ðz1; z2Þ and h0

040 on ðc1; c2Þ;
in the same manner we can see that c24ðz2 þ x3Þ=2: The proof of the inequality
ziþxiþ1

2
oci now falls into a recurrent procedure, that allows us to complete the proof

of the assertion by induction on i:
From Assertion 2 with i ¼ 0 it follows that jh0

0ðx1Þjojh0
0ðx0Þj; and with i ¼ 1 we

see that

jh0
0ðz1Þjo1

2
jh0

0ðx1Þj and jh0
0ðx2Þjo1

3
jh0

0ðx1Þj:

Therefore,

jh0
0ðz1Þjo1

2
jh0

0ðx0Þj and jh0
0ðx2Þjo1

3
jh0

0ðx0Þj:

In general, as ðzj þ xjþ1Þ=2ocjoxjþ1 for each integer jX1; we deduce that

jh0
0ðzjÞjo1

2
jh0

0ðxjÞj and jh0
0ðxjþ1Þjo1

3
jh0

0ðxjÞj:

Thus, for each integer jX1;

jh0
0ðzjÞjo1

2
1
3

� � j�1jh0
0ðx0Þj:

On the other hand, note that for each jX1; jh0
0ðzjÞjXjh0

0ðxÞj for every xA½zj; zjþ1:
Hence, for all xA½zj; zjþ1Þ;

jh0ðxÞjp
Z x

zj

jh0
0ðzjÞjo

Z zjþ1

zj

1

2

1

3

� � j�1

jh0
0ðx0Þj ¼

1

2

1

3

� � j�1

jh0
0ðx0Þj:

Accordingly,Z þN

z1

jh0j ¼
X

N

j¼1

Z zjþ1

zj

jh0jo
XN
j¼1

Z zjþ1

zj

1

2

1

3

� � j�1

jh0
0ðx0Þj

¼ 1

2

XN
j¼1

1

3

� � j�1

jh0
0ðx0Þj ¼

3

4
jh0

0ðx0Þj:
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In this way, taking into account that h0 is an odd function, we getZ þN

�N

jh0j ¼
Z �z1

�N

jh0j þ
Z z1

�z1

jh0j þ
Z þN

z1

jh0j

o
3

4
jh0

0ðx0Þj þ
Z z1

�z1

jh0j þ
3

4
jh0

0ðx0ÞjoN;

whence h0AL1:
Finally, applying Theorem 4.46, with H0 in place of G; we conclude that any H in

S1;1
1 has the property that CðHÞ is in L1:
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