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Abstract

Let J be an open interval and denote by %1y the set of all the splines of degree at most n — 1
with simple knots in I, a countably infinite set of points in J, n>2. In this paper, we prove
that there exists a unique best ¢-approximation to a continuous function in Z4(J) from Sy,
where ¢ : [0, o)+ [0, c0) is a convex function that generalizes the pth-power functions, p>1.
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1. Introduction

Throughout the paper ¢ will always denote any convex function defined on
[0, 00), $(0) =0 and ¢(y) >0 for y>0. Thus, ¢ has a right derivative at any point
and a left derivative at any point in (0, c0), which we will denote by qﬁ; and ¢’ ,
respectively. We also assume that ¢ satisfies Property A,, i.e., there exist yp>0 and
¢>0 such that ¢(2y)<cp(y) for y=yy. Under these conditions,

ZLy(K) = {h : h is Lebesgue measurable on K and / o(|h)) < oo}
K
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is a linear space, where K is an arbitrary interval. For ¢(y) = ¢,(y) =17, I<p< 0,
we write L,(K) instead of £ (K).

Definition 1.1. Let /€ £ 4(K), and let .# be a set of functions defined on K. We say
that go, in .#, is a best ¢-approximation to [ from M if

/¢<|f—go|></ (f —gl) for all ge..
K K

In the case ¢ = ¢,, I <p< oo, we will say that gy is a best L,-approximation to f
from /.

It is well known that if 1<p< oo, then there exists at most one best L,-
approximation when approximating from a convex set .#. This follows because the
L,-norm is strictly convex whenever 1 <p < co. On the other hand, the uniqueness of
best Li-approximation does not follow a general rule and hence this is a question of
main interest in the theory of best approximation. So a best Lj-approximation from
a convex set may not be unique (for instance, see the example in [1]). However,
provided f" is continuous, uniqueness may be valid when approximating from some
special classes of functions. For instance, Galkin [3] and Strauss [11] have showed
that the problem of best L;-approximation to a continuous function from the space
of polynomial splines with finitely many fixed knots has a unique solution. Recently,
in [2,5] we have given an affirmative answer to the problem of uniqueness of best L;-
approximation to a continuous f € L;(Jy) from the set of n-convex functions, n>2,
Jo being an open, bounded interval.

From now on, J will denote a fixed, open interval (a,b), —c0 <a<b< + o0, and
we will write £ for Z4(J). Let II be a set of infinitely many fixed points in J
satisfying [TnJ =11, i.e., I1 = {x;},., with a<x; <x;<b whenever i</, where I is
Z,or N,or =N, and x;»aasi— — o0, x;»basj— + co. For a fixed and arbitrary
integer n>=2 we will henceforth denote by #p—its dependence on n is not
indicated—the set of all piecewise polynomial functions g of degree at most n — 1
with simple knots in IT (g is (n — 2) times continuously differentiable). Such splines
arise naturally in the study of best ¢-approximation to an f'€ £ from the set of n-
convex functions (see [5,13]).

Our aim in this paper is to prove the existence and uniqueness of best ¢-
approximation to a continuous fe %4 from & for every ¢ with the conditions
established at the beginning of the paper. In Section 2, we will prove the existence of
best ¢-approximation for any f'€ %, and in Section 3, after stating the so-called
Property A, we will show that if %% satisfies Property A, then there exists a
unique best ¢-approximation to a continuous f € £, from %11. Finally, in Section 4
we will prove that both & and &% satisfy Property A.

We remark that the splines with infinitely many knots may be a useful tool in some
applications. So, for instance, observe that if J is an unbounded interval then the
unique best Lj-approximation to a continuous function from the set of splines with
finitely many knots has a bounded support necessarily. On the other hand, the
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theory developed in the paper will allow us to show the existence of splines in L; with
infinitely many knots and with unbounded support (see the example at the end of the
paper).

Finally, we remark that in [2,5] we have proved that a proper subspace of
S nn Ly satisfies Property A. In the present paper, we have used a similar technique
to prove that &N %, satisfies Property A. But this similarity is formal only. Most
of the main results in this paper have an independent difficulty and they cannot be
solved as a consequence of the results obtained in [2,5].

2. Existence of a best ¢-approximation from ¥

Theorem 2.1. Let fe L 4. Then there exists a best ¢p-approximation to f from Sn.

Proof. Recall that J = (a,b), where — o0 <a<b< + co. We are assuming here that
IT = {x;};cn, 1.€., a<x;<Xx;<b whenever i<j, and x;—>b as i— + oo. Let

Y= inf{/J o(lf —gl): geyn}.

Note that y< co since 0|;, the zero function on J, is in &, and f'e Z4. For each
leN we take a g;e .9y satisfying

[ otr-ap<r+ st (1)
J

Note that in the case a = —oo each g; vanishes identically on (g, x;]. Assume now
a> — oo. Then we consider the Banach space (Py-1[a, x1], | - [|4), where Py_1[a, xi]
is the set of the polynomials of degree at most n — 1 restricted to [a, x1], and || - ||, is

the Luxemburg norm, defined on £y ([a, x1]) by

llgll, :inf{/l>0:/ (,25<|i|><1}
la,x1]

As ¢ is an increasing, convex function, for each /e N we have

1 1 1
/[1 ¢(‘§gz ) < /[1 ¢(§|f—gz| +§|f|)

<[ (3007 =a+ 50000 ) <u.

where M is a constant, which we assume greater than 1, and the last inequality is
justified because of (1) and the fact that f is in £ 4. Then

1 1 1
¢(_ |91|) < [ <z>(—|g1) <1
/[a,x]] 2M M [a,x1] 2
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where the first inequality is due to the convexity of ¢ and to the fact that ¢(0) = 0.
Thus, [|g/|[,<2M. As P,_1[a, x1] is a finite-dimensional space, the ball
{heP, i la,x] : |, <2M}
is a compact set. Therefore, there exist a polynomial /yeP, i[a,x;] and a
subsequence {ly}; ., Of {/};cn such that
lgt, = holl, =0 as lp— + oo.

So, by the equivalence of norms in the space P,_[a, x1] we get

{91} 1yen, = ho  uniformly on (a,x;] as Iy~ + oo.

It is obvious that this last result is also valid in the case a = — o0, with Ag = N.

Consider now the space P,_;[x,x;], endowed first with the Luxemburg norm.
With the same procedure as before we deduce that there exist a subsequence {/1}; .,
of {10},0GAO and a spline /4, extension of %y on (a, x;] and with a simple knot at x,
such that

{91}, en,— M1 uniformly on (a,x;] as I} — + oo.

In this way, for any ieN we obtain a subsequence {/;};, ., of {/i-1}; . , and a
spline #;, extension of h;,_; on (a,x;] and with simple knots at the points
X1, X2, ..., X;_1, such that

{91.};,en,—hi  uniformly on (a,x;] as [;— + co.

Thus, applying the Cantor diagonal procedure we get a subsequence {/},., of {/},.n
and a gope .1 such that

{91}ca—90 pointwise on J as /- + 0.

As ¢ is continuous, applying Fatou’s lemma and taking into account (1) we deduce
that

r< [ ods —al = | Jm, ¢(f—gz|)<11ir7r:+iAlgof/J oS — o) <.

Hence, it follows that gg is a best ¢-approximation to f from <. If ' = —N, or
I' = Z, the proof is analogous. [

3. Property A and uniqueness of best ¢-approximation from %51

The following lemma gives a characterization formula for a best ¢-approximation
from %1y to a function f'e £ . Its proof'is the same as that in [1, Lemma 1]. Observe
that if go is a best ¢-approximation to f € £y from &, then g is in SN &Ly, since
feZy, and £ is a linear space.
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Lemma 3.1. Let e Zy. The function gy, in 11N\ Ly, is a best p-approximation to f
Sfrom S if, and only if, for all he 1Ly we have

/J%{IDO} h(Z(p<g @’ (1S = 90l) = X150y 0" (1S = g0]))

[ T o1 = 0) = T2 81 = 0l) 20,
where X' g denotes the characteristic function of the set R.

Property A was introduced by Strauss [12] in an arbitrary finite-dimensional
subspace of €(Kp), the set of the continuous functions on Ky, where Kj is a compact
interval, to provide a sufficient condition to ensure that there exists a unique best L;-
approximation to a function in ¢(Kj) from that subspace (Chapter 4 in [7] is devoted
to study this property). We next establish Property A in any linear subspace % of
%(K), where K is an arbitrary interval. Set

U == {u",u" is continuous on K, |u*| = |u| for some ue S\{0}}.

Definition 3.2. We say that . satisfies Property A if to each u*e U* there exists an
hoe #\{0} such that

(@) hp =0 a.e. on {u* =0}; and
(b) hou*=0 on J.

The following theorem provides us with a sufficient condition for uniqueness of
best ¢-approximation to a continuous function in £y from “p.

Theorem 3.3. Let f be a continuous function in & y. If the space SN <Ly satisfies
Property A, then there is a unique best ¢p-approximation to f from .

Proof. Let f be a continuous function in £, and assume that gy and g;, both in
SnnZy, are two different best ¢-approximations to f from . Let g; =
(I = A)go + 491, 0< A< 1. Using the convexity of ¢ we see immediately that for every
J the function g, is also a best ¢-approximation to f from . Using in addition the
continuity of f we can assert that the sets {go<f<g¢1} and {g; <f <go} are empty.
As a consequence, for 0<ly</l; <1,

{f>9,}={/>9,} and {f<gy}={f<gu}

Let u = g,, — g,,- We now define on J the function u* := |u|sgn(f — g,,). So u* is
continuous, because u, f and g,, are continuous, and u = 0 when f = g,,. Moreover,
|u*| = |u| and ue (¥SnnZL4)\{0}. Furthermore,

u'=0 on{f =g},
u*=0 on {f>g,}

uw'<0 on {f<g;}
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If Ynn %, satisfies Property A, then there exists an /pe (¥ Z4)\{0} such that
(a) and (b) in Definition 3.2 hold with this function »* and with %" .2 in the place
of &. Hence,

hy=0 ae.on {f =g},
ho=0 on {f>g,},
ho<0 on {f<g,}

Thus, the characterization formula in Lemma 3.1 fails when gy is replaced by g,,,
and h by ho, which contradicts that g,, is a best ¢-approximation to f from <. O

In the following section, we will prove that both &y and 1N % indeed satisfy
Property A. When J is a bounded interval it is known that the space of the splines
with finitely many simple knots satisfies Property A [11]. We remark that for n>3 the
difficulty of the proof that & (¥ N £ ) satisfies Property A lies in the existence of
splines in &1 (in 1N Z4) with infinitely many isolated zeros. (We show such a
spline in ;N L; in the example at the end of the paper).

4. Property A in the spaces 1 and SN %y
4.1. Definitions and first results
In the following definitions K denotes an interval, and 4 is a function in ¢(K).

Definition 4.1. We say that / has r sign changes if there exists co<c; < -+ <c¢a1 in K
satisfying /(c;)h(ciy1)<0,i=0,1,...,r, and there exists no set ¢j, <c}, <--- <c,,, in
K satisfying that property with v’ >r. If 4|, , the restriction of / to an interval LS K,
has r sign changes, then we also say that / has r sign changes on L.

Definition 4.2. For m >0, an m-dimensional linear subspace 7 of ¢(K) is said to be
weak Chebyshev (WT-space) if every function in 7 has at most m — 1 sign changes.

Definition 4.3. Assume that (a;, b,) is the interior set of K, — o0 <a; <b; < + o0. For
an integer m> 0 we say that the set F, Card(F) = m — 1, is a (finite) alternating set for h
if F= {z,}’l”;ll, a<z1<z3<---<zy,_1<b;, and either (—1)1h>0 on (z;,z41), [ =
0,1,....m—1, or (—l)lh<0 on (z;,z141), 1 =0,1,...,m— 1, where zo = a; and z,, =
by. This definition, for a finite set F, has a natural generalization to a set Q = {z;},., of
infinitely many isolated points in (ay, b;) satisfying z;, <z;, whenever /; </, and z; —q;
as/— — o0, z;—> by as/— + o0. Indeed, we say that Q is an (infinite) alternating set for
h if either (—l)lh>0 on (z1,z141), all [eZ, or (—1)1h<0 on (z;,zi41), all [eZ.

An m-dimensional WT-subspace 7 of €a;,b;]|, — o0 <a;<b; < + o0, satisfies the
following two properties (see [9] or [10] for the first; [4] or [14], Lemma 4.1, for
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the second):

[SSS] For m>1, J contains an (m — 1)-dimensional WT-subspace.

[JKZ] For m>0, given a set F<(ay,b;), Card(F) = m — 1, there exists a function
in 7\{0} for which F is an alternating set.

Definition 4.4. An interval L= K is said to be a zero interval of hif Card(L)>1and &
vanishes identically on L. The zero interval L is a maximal zero interval of & if L is
not strictly contained in any zero interval of /.

Definition 4.5. A point ze K is a zero of hif h(z) = 0; z is an isolated zero of h if there
exists a 0 >0 such that z is the unique zero of 4 in Kn(z — 9,z + 9).

Definition 4.6. Let z be an isolated zero of & in (a1, b)) = K. We say that z is a simple zero
of h if h changes sign at z. The point z is a double zero of h if h does not change sign at z.

Definition 4.7. Given an interval L= K, suppose that 4|, , the restriction of & to L,
has finitely many isolated zeros, as well as finitely many sign changes on L. Then
the number of isolated zeros of 4|, shall be denoted by Z(h), and Z2(h) will
denote the number of sign changes of 4|, plus twice the number of double zeros of
h|; plus the number of endpoints of L that in addition are isolated zeros of A, .

The following result follows from Lemma 3(a) in [5].

Lemma 4.8. Let he 4 (K), where K = [ay, by], and let I[h]( f h, all xelay,by).

Assume that h has at most r sign changes. Then the fumtlon c + Ilh ] has finitely many
sign changes and finitely many isolated zeros for every constant ¢. More precisely,
Z[Za, b]](c + I[h])<r+ 1, whence ¢ + I[h] has at most r + 1 sign changes.

Definition 4.9. For a fixed and arbitrary integer n>2, we denote by &;;—its
dependence on 7 is not indicated—the linear space of the restrictions to [x;, x;] of all
functions in ;. Furthermore, y* (7 ) will denote the linear subspace of %;; that

consists of all the splines Ge.;; satisfying GQ (x;)) =0 (GV(x;) = 0, respectively)
for 1=0,1,...,n—=2. Finally, 7, = 9 },0.97.

The sets &, Vj;, S and Cfo are WT-spaces (cf. [6]), and because of Properties

[SSS] and [JKZ] it can be proved that they also satisfy Property A [12]. We have
dimtgpilj :j—i—|—n— 17
dim ?fg =dimY;; =j—1i,
dim ,V?J =max{0,j —i—n+ 1}.

Let g be a function in %, or in &y, i <i<j<j'. We write Z|;;(g) for Z,, .(9),
and mutatis mutandis for Z[i_hxj] (9), as well as for (x;,x;), [x;,%;) and (x;,x;].
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Definition 4.10. For he.%; \{0} we denote by Z[;:.] (h) the number of zeros of &
counting multiplicities, such as in [8, Section 4.7] (zero intervals also count in
Z[Z‘/] (h)). We have Zy;;(h)<Z3, ; (h) SZ[:(/‘] (h).

Lemma 4.11. Let g be in Sn, or in Syj, I <i<j<j, where g does not vanish
identically on [x;, x;]. Then

@) ZX (9)<j—i+n—2.

(b) If the restriction of g to [x;,x;] is in yi[’ orin &, then Zijgg)<j—i—1,0r
Zip(g)<j—i—1, respectively.

(¢) If the restriction of g to [x;, x;] is in «Vg,-, then Z;;(9)<j—i—n.

Proof. Item (a) follows from [8, Theorem 4.53]. To prove (b) and (c), suppose that
9lix,.x; 18I0 ,Vj; If x; is an isolated zero of g[},, .|, then the multiplicity of x; is n — 1.
Otherwise the multiplicity of the zero interval [x;, x|, i</<}j, is not smaller than .
Hence, Z; 1(9) <Z[‘i’fj] (9) — (n—1). A similar rule holds when g'[xi,xj] is in & ;. Now
(b) and (c) follow from (a). O

In order to prove the uniqueness of best ¢-approximation to a continuous
function in %y from %, and according to Theorem 3.3, our aim is now to
demonstrate that the space N %y indeed satisfies Property A. The following
theorem states that both %1 and 1N %y satisfy Property A.

Theorem 4.12. Let u be in 11\{0}, and let u* denote a continuous function defined on J
satisfying |u*| = |u|. Then there exists an hye Sn\{0} such that

(@) hp =0 a.e on {u* =0}
(b) hou* =0 on J; and
(c) Ifuisin £y, then so is hy.

It follows from Theorem A, in [2,5], the existence of an Ay e &1 (for a bounded J)
satisfying (a) and (b) of Theorem 4.12. However, we are not able to determine
whether /g satisfies (c) as well. So, even in the case where J is bounded, we cannot
make use of the previous existence of that theorem to prove Theorem 4.12, except for
the fact that we will use an analogous technique to that employed in the proof of
Theorem A. In fact, both proofs are based on the construction of appropriate weak
Chebyshev spaces defined in terms of levels (Definition 4.27). But we emphasize that
in this paper the definition of level is not the same as that employed in Theorem A.

Theorem 4.12 will be finally proved in Section 4.3. We first need several results.
We begin with the following two lemmas, which allows us to reduce the number of
cases to consider, depending on the form of I and u. We omit their proofs because
they are completely similar to those of Lemmas 8 and 9 in [5], respectively.
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Lemma 4.13. If Theorem 4.12 holds when T = Z, then it also holds when T' = N, or
I'=-N.

Lemma 4.14. Theorem 4.12 holds when I" = Z and u has at least two maximal zero
intervals.

According to Lemmas 4.13 and 4.14, we henceforth suppose that I' = Z and that
the function u, in the statement of Theorem 4.12, has at most one maximal zero
interval. However, the main case to consider is that in which u has no zero interval.
Under this condition the zeros of u are isolated, and therefore the continuous
function u*, defined on J and satisfying |u*| = |u|, determines a set of isolated points
in J, namely

Q= {zeJ:zis a simple zero of u"}.

For i<j, set
Q) = Card(Qn (x;, x;)), Qi = Card(Qn[x;, x;]),
Qi = Card(Qn[x;,x;)), Q) = Card(Qn (x;,x;]).

Lemma 4.15. Theorem 4.12 holds when T = Z, the function u has no zero interval and
u* is such that Q) <j—i—n+1 for some i<j.

Proof. If Q) <j—i—n+ 1 for some i<j, then we can use [JKZ] in an (Q;; + 1)-
i
that there exists a spline Hoey?_j\{o} for which QN (x;,x;) is an alternating set.

Therefore, we define an /g in \{0} by

dimensional WT-subspace of &, after applying [SSS] if Q) <j — i —n, to show

o) = Hy(x), xelx;,xj],
o Oa xe"\[xiaxf]'
Then it is clear that either 4y or —hy satisfies (a)—(c) of Theorem 4.12. [

According to Lemma 4.15, we now establish the following definition.

Definition 4.16. We say that {u, Q} is a reference pair if u is in ¥ without zero
intervals, where IT = {x;},., and Q is a set of zeros of u satisfying

Qi =j—i—n+1 foranyi<j.

Proposition 4.17. Let {u,Q} be a reference pair. Then there exist two sequences of
integers {1,},cn and {,},cn satisfying

"'<l\'<"'<12<ll<_n<n<.]1<.]2"'<.]v<"' (2)
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and the following properties:

{u = O}m(J\(x,,,xA,l)) = Qﬂ(]\(x“,le)),

Q(N‘_H]ZJVH —j for all veN and any Dy SI<Jygrs
Q,  h=i— 1 forall veN and any 1,41 <i<1,,

Q) =du—d, Jorany v<p,
Q) =t —1 forany v<p.

Proof. Applying Lemma 4.11(a) to the function u, we have
Z[:}](u)Sj —i+n—2.

Hence, if {u, Q} is a reference pair then
J—i—n+1<Q;,) <) <Z[,‘J](u)<Z[?;](u)<j —i+n-2

for any i<j. So, in particular, if i = 0 then for every je N we get

1 - n<Q[0,/~] —j<Z[0’j](u) —j<n—2.

69

Then Qn[xy,b) = {u=0}n[xy,b) for j sufficiently large, since Zjo;(u)—
Q,)<2n — 3 for all jeN. In addition, since {Q; —j};cn is bounded it is easily

checked that there exists a sequence of integers (n<)y,<j,<:-<j, <---, such that

Q) — g, =limsup(Qp, —j), all veN,

jotw

{u=0}nlx,,b) =Qnlx,,b),
and

Qo —J<Qp, ) —J, forallveNand;j>y,.
Thus, it is clear that

Q

(]1,1““] =

and

Q50 =0,y — Loy =g, —J, forany v<p

Qo1 — Qoj=dv1 —J for all veN and any j, <j<y, .,

Taking now j=0 in (6), and reasoning in a similar way, we conclude the

proof. [

Definition 4.18. Whenever {u, Q} is a reference pair, set

S, = {Geyl‘_dv {G = 0}m{x,‘,,xjv}QQr\{x,‘,,xJ‘.}}.
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Note that &, is a linear space satisfying V(I)MEVVQV,‘,_N with dim .%, =

Jy— W +n—1-Card(Qn{x,,x, }). Moreover, &, is a WT-space (cf. [6]). We will
henceforth write

m, =dim¥%, =y, —1,+n—-1-0(1,)—0(y,),
where
o(1y) = Card(Qn{x,}) and o(y,) = Card(Qn{x, }).

Furthermore,

=14+0(,) and j, =y, ,—0a(y,).

The following theorem follows from Theorem 2 in [5]. So we omit the proof, which
is based on properties (4) and (5).

Theorem 4.19. Let {u,Q} be a reference pair, and let Ge 9. Then there exists a
unique spline g in &'r1, which we will denote by ¥ (G), such that ¥(G) = G on [x,, x, |
and

{¥(G) =0} (I\(xyy,x,,)) 2QN (J\(x,,, ). (7)
Moreover, ¥ determines an isomorphism between &1 and ¥Y(¥) = {¥(G):Ge S }.

We are now in a position to prove Theorem 4.12 for the case n = 2. We will later
obtain some results which are valid only if n>3.

Theorem 4.20. Theorem 4.12 holds for the case n = 2.

Proof. According to Lemmas 4.13 and 4.14, we assume I' = Z and ue ¥1\{0} has at
most one maximal zero interval.

Suppose first that # has no zero interval. From Lemma 4.15 it is sufficient to
consider the case in which {u, Q} is a reference pair. Due to (3) and (5), Z(, ,, (1) =
Q] =dvi —J, and Zj, 5 (u) = Q =1, — 1,41 for every v=1, and this
implies that the continuous broken line u has one simple zero in (x;, x;;1) forj>j,, as
well as one simple zero in (x;1,x;) for i<1. Hence, u(x, )#0 and u(x,)#0 for
every veN. Thus, ¥ = &, , and dim % = j;, —1; + 1. After applying [SSS] if
Q) <J; — 11, we use [JKZ] in an (€, , ) + 1)-dimensional WT-subspace of ¥ to
obtain an Hoe ¥ 1\{0} for which Qn(x,,x, ) is an alternating set. Now apply
Theorem 4.19 to Hy and let &y .= W(Hy). By (7) and (3),

{hy = 0} (1\(x,,%,,)) 220 N\ x,,)) = {1 = 0} A (J\(x,,,x,))-

Then since /4 is a broken line, it follows that the restriction of /g to [x 1 b) is of the
form ¢; u, where |¢i| = |Ho(x, )/u(x, )|, and analogously, the restriction of /g to
(a, x,,] is of the form ¢} u, where ||| = |Ho(x,,)/u(x,)|. Accordingly, (c) in Theorem
4.12 holds. Furthermore, the only (simple) zeros of /g in J\(x,,, x,, ) are the points in
QN (J\(x,,x,,)). Thus, Q becomes an alternating set for /o, i.e., (a) and (b) in

lv+17’\')
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Theorem 4.12 hold as well. So, for n = 2, Theorem 4.12 is true when u has no zero
interval.

Suppose now that ue%\{0} has only one maximal zero interval. Using
considerations of symmetry, we can assume that this zero interval is not [x;, b) for
any jeZ. Without loss of generality, suppose [x_;, xo] is a zero interval of u and
u(x1)#0. If Card(Qn (xo,x;))<j— 1 for some j>1, then apply Property A in the
(j — 1)-dimensional space %) ; to the restrictions to [xo, x;] of u and w*. In this way
the function which results from this application is trivially extended to J to show that
Theorem 4.12 holds in this case. Thus, consider Card(Qn (xo,x;)) =j — | for every
j=1. Then u* and u have the same (simple) zeros in (xg,b), whence either u* = u or
u* = —u on [xp,b). Finally, taking iy = 0 on (a,xo) and hy = u* on [xg, b), it is easy
to see that Ay satisfies (a)—(c) of Theorem 4.12. [

In what follows, and until the final proof of Theorem 4.12 in Section 4.3, we will
work under the assumption that {u, Q} is a reference pair (Definition 4.18). In this
way, we shall deal with the knots x,,, x, and the WT-spaces ¢, veN, and with the
linear map . Note that |J,2; (x,,x, ) =J.

Lemma 4.21. For n=3, let Ge ¥ and assume that for some ueN the restriction of
g ="Y(G) 10 (x,,,x, ) has my — 1 sign changes. Then g has no zero interval, all the

zeros of g have multiplicity one, and

{g=0}n(\(x,,%,,) = Q0 (N\(x,,%,,)-

Moreover, g2 has a simple zero in each (x;,x;y1), all ieZ.

Proof. We first prove that g has no zero interval. If G has a zero interval, then using
the definition of multiplicity of a zero interval (see [8, Section 4.7]) we get
f‘lwu](G)Zmﬂ -1+0(y,)+0() +n—1=y,—1,+n—2+n—1, which contra-
dicts Lemma 4.11(a).
Assume now that g has a zero interval [x;,x;], j/>7,, and that g has no zero
interval in [x, , xy]. Observe first that // = j is not possible. Indeed, in this case the
restriction of g to (x,,x, ) is in the (j, —1, —o(1))-dimensional WT-space

NS ,. On the other hand, by hypothesis g has m, — 1 sign changes on

td y
(xi,,x,,), and

my—1=j, —p+n=2-0(,)—0(1,)=27,— tu—0(1u),

since n>3. This is a contradiction. Thus, j/ > . necessarily. Let j, €7 satisfying
Jy,>J'- Note first that

Q) = 21y WSy, WSy, =7 +1=2,
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where the equality is due to (3), and the last inequality follows from Lemma 4.11(a).
Then, taking into account (5),

Q) = Q) = Qg ) 20 —Ju— 0y =S 1 =2) =) =y, —n+2.

Since g has m, — 1 sign changes on (x,“,xjﬂ) and has no zero interval in [x, , x;], it
follows that

Z(’;n,lﬂ)(g) =m, — 1.

Thus,

Z0,0(9) = Z1,5,09) + 2,1 (9) 2 Z0,,)(9) + 0 (1) +0(1,) + Q)
=My — 1 +a(lﬂ) +O'(Ju) +j, —Jyu —n+2 :j/ — Iy,

where (7) is used in the first inequality. So Z|, i (g9)=/ — 1,, which contradicts
Lemma 4.11(b) since the restriction of g to [x, , x;] is in & e In consequence, ¢ has
no zero interval in [x; ,b). The proof that g has no zero interval in (a,x,] is

completely symmetrical. Therefore, g has no zero interval.
To prove that all the zeros of g have multiplicity one, and that {g=

0t (N\(xy5x,,)) = Q@ (J\(xy,,x,,)), consider an arbitrary integer v>pu. As g has
no zero interval, we get

Z01,5)(9)Z Z11,,)9) = Ziyy0,)9) + Zpa0(9) + 25,5, (9)
>my—1+0(1,) +0(1,) + Q)+,

Iyl
=Jy—wtn=2+yu—n+jy,—Jy,=J,—bt+tn—-2 (8)

where (7) is used in the second inequality, and the second equality follows from (5).

If z is a zero of g of multiplicity greater than one, then the first inequality in (8) is
strict for all v>u with the property that ze(x,,x, ). Therefore, we obtain a
contradiction since from Lemma 4.11(a), ZE‘I“,J“](g)<JV — 1, +n—2. Thus, all the

zeros of g have multiplicity one.
Due to (7), {g =0} n(J\(x,,,x, )) 22" (J\(x,,,x, ). Hence, to prove that {g =
0N (N\(xy,,x;,)) = QN (J\(xy,, x;,)) it is sufficient to see that

{9 =0} (I\(x,,x,,)) SQ (\(x,,.x,.))-

Suppose that there exists a point z'e{g=0}n (A(x,ﬂ,xju)) such that
z’qéQn(J\(xlﬂ,xJﬂ)). Then the second inequality in (8) is strict for all v>pu with
the property that z'€(x,,,x, ). In this way, we again obtain a contradiction. Thus,
{9 =0} A (\(x,,%,,)) = QA (%, %, )):

We finally prove that g"~2) has a simple zero in each (x;, x;;1), all ieZ. From (8)
and Lemma 4.11(a) it follows that ZE‘,”JV](g) =2,,)9) =y, —1+n-2 for any
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v> u. Therefore, Z[IZ‘_‘/.] (9) =g, — 1y +n—2for any v>pu. Then applying n — 2 times
Lemma 4.8 we deduce that g”’~2) has j, — 1, sign changes on [x,,, X, ]. This means

that the broken line g"~2) has a simple zero in each (x;,x;;), all i€ Z, since v is an
arbitrary integer greater than u. [

Definition 4.22. Let Ge.¥|. We say that g .= W(G) goes to 0 to the right if g =0 on
(xj,b) for some jeZ, and g goes to 0 to the left if g =0 on (a,x;) for some ieZ. It is
said that g goes to 0 if g goes to 0 to the right and to the left.

Lemma 4.23. Let g .= Y(G), where Ge %1. Then there holds:

(a) If g does not go to 0 to the right, then g has no zero interval in [x, _1,b). Moreover,
for u; large enough all the zeros of ¢ in [xfm ,b) have multiplicity one, and {g =
O}r\[xjm ,b) = Qﬁ[xfm ,b).

(b) If g does not go to 0 to the left, then g has no zero interval in (a, x, —,]. Moreover,
for w, large enough all the zeros of g in (a, x,uz] have multiplicity one, and {g =
0}n (a,x,ﬂz] =Qn(a, xluz}.

Proof. To prove (a) assume that [x;, x;] is a zero interval of g contained in [x
Then we define

. g(x), xe(a,x),
go(x) = {0, x€[x;, b).

b).

11—17

As g does not go to 0 to the right, it is clear that g and ¢g¢ are two different extensions
of G satisfying (7), in contradiction with Theorem 4.19. Thus, g has no zero interval
in [x, —1,b). Hence, the zeros of g in (x, _1,b) are isolated, and (7) implies

Q[J]J]sz[hﬂ(g) for every j>,.
From Lemma 4.11(a),

Zf;],/](g)gj_ Jy+n—2 forevery j>j,.
Then since {u,Q} is a reference pair, we have

J=a =+ 1< <7, 5(9)<Z; 5(9)<j— gy +n-2.
Therefore, for every j> j,,

Z 4(9) = Zy, 0(9)<2n—=3 and  Z;, 1(g) — 9, ;<21 — 3.

JlJ]
If g has a zero of multiplicity greater than one in [xjﬂ,b) for all peN, then
Z;, @) =2y, 5(g)=> + 0 asjo + o,

a contradiction. Thus, for v large enough all the zeros of g in [x, , b) have multiplicity
one.



74 A. Damas, M. Marano | Journal of Approximation Theory 126 (2004) 60113

By (7). {9 =0} n[x,,,0)2Qn[x,,b). Hence, if {g = 0} n[x, ,b)#Qnx, ,b) for
all ueN then

Z, (9) — Q> + 0 asjo + o,

which contradicts that Z, ;(g) —Q, ;<2n—3 for every j>j,. Thus, for x large
enough, {g =0} n[x, ,b) = QnIx, ,b). Consequently, (a) is proved. The proof of
(b) is similar. [

Lemma 4.24. Let V and G be in &1\{0}. Assume that all the zeros of v.="¥(V) are
isolated and of multiplicity one. Suppose also that for some ueN the restriction of
g ="Y(G) 1o (x,,,x, ) has m, —t sign changes, t>1.

(a) If g has a double zero 2 € ((x,,,x, )\Q) U (x,,,x, ) for a x> p, then g — ev has at
least my. — t + 2 sign changes on (x,,,x, ) for all ¢ sufficiently small and with a
suitable sign.

(b) If'g has a double zero 2" €Qn ((x,,,x, )\(x,,,x, )) for a k> pu, then g — ev has at
least m, — t + 1 sign changes on (x,, x, ) for all ¢ sufficiently small. If in addition
g=0on[x, ,b) (on (a,x,]), then g — ev has at least m, — t + 2 sign changes on
(x5 X, ) for all ¢ sufficiently small and with a suitable sign.

(c) If g has a simple zero z* € (x,,_, xJK)\(x,“,xJ“)for ax>uandz* ¢Q, then g — ev has
at least m —t+ 1 sign changes on (x,.,x, ) for all ¢ sufficiently small. If in
addition g =0 on [x, ,b) (on (a,x,]), then g —ev has at least m, —t +2 sign
changes on (x,.,x, ) for all ¢ sufficiently small and with a suitable sign.

(d) Ifg=0o0n|x, ,b) (on (a,x,]) for ax>pu, then g — ev has at least m,, — t + 1 sign
changes on (x,., x, ) for all ¢ sufficiently small and with a suitable sign.

Proof. As v does not go to 0 to the right nor to the left (because it has no zero
interval), the spline g — Av does not go to 0 to the right nor to the left, except for at
most two values of A. Excluding these two possible values of A, we deduce from
Lemma 4.23 that g — Av has no zero interval in J\(x,,, x, ). Furthermore, g — Zv may
have zero intervals in (x,,x, ) only for a finite number of values of /. As a
consequence, for all ¢ sufficiently small g — ev has no zero interval. Hence for such all
&, each sign change of g — ¢v is due to a simple zero of g — ev. So, taking into account
that all the zeros of v are isolated and of multiplicity one, and that by (7), v(z) = 0 if
zeQn (J\(x,,x,,)), for a x> u the following facts can be easily proved:

(I) The m, — ¢ sign changes of g on (x,,, x J“) produce at least m, — t simple zeros
of g —ev on (x,, xjﬂ) for all ¢ sufficiently small.

(IT) Each simple zero z of g in (x,,x, )\(x,,,x Jﬂ) produces, for all ¢ sufficiently
small, at least one simple zero of g — ev, say z(e), with z(¢) >z as e—>0.
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(III) Each double zero ' of g in ((x,x, )\@)u(x,,x, ) produces, for all ¢
sufficiently small (and with a suitable sign if v(z’) #0), two simple zeros of
g — v, say z| (&) and z5(¢), such that z}(¢) >z and z5(e) >z as ¢—0.

(IV) Each double zero z” of g in Qn((x,,x, )\(x,,x, )) produces, for all ¢
sufficiently small, two simple zeros of g — ¢v, say z{(¢) = z” and z/(¢), such that
Z5(e) > 2" as 0.

(V) Each nonisolated zero of g in Q@ ((x,,, x, )\(x,, X, )) is a simple zero of g — ev
for every ¢#0.

(VI) For all ¢ sufficiently small (and possibly with a suitable sign if I1I) applies), all
the simple zeros of g — ¢v obtained in (I)—~(V) are different.

Applying (5), for every k> u we obtain

Q(z,\,,lﬂ] =y — e — O-(ZK) + a(’u) and Q[‘]“,‘],C) =Jx —Ju O-(JK) + a(.],u)'

Therefore,

Q(z,\.,zﬂ] + Q[J[I’JK) = My — mﬂ‘ (9)

Suppose that 2" is a double zero of g and z'e((x,,,x, )\Q) U (x,,,x, ). From (7),
g=01in QN ((x,,x, )\(x,,, xju)). Then using (9) and (I)~(VI) we deduce that g — ev
has at least m, — ¢ + 2 sign changes on (x,,, x, ) for all ¢ sufficiently small and with a
suitable sign. This proves (a).

Assume now that z"€Qn((x,,,x; )\(x,,,x,,)) is a double zero of g. Then taking
into account again that g =0 in QN ((x,,x; )\(x,,x, )), and using (9), (I), (1),
(IV)~(VI) we see that g — ev has at least m, — t + 1 sign changes on (x,,, x, ) for all ¢
sufficiently small. Suppose that in addition g =0 on [x, ,b). Then there exists
J<J, such that g =0 on [x;,b) and g(x;_;)#0. Therefore, apart from the simple
zeros of g — ev mentioned in (I), (I1), (IV) and (V), g — ¢v has another simple zero in
(xj_1,x;) for all ¢ sufficiently small and with a suitable sign. An analogous argument
applies when ¢ =0 on (a,x,]. This proves (b). The proofs of (c) and (d) are
similar. [

4.2. Levels in W(%1). The WT-spaces y‘f'r and T,

Recall that we are assuming that {u,Q} is a reference pair, where Q = {z;},_,,
with a<z;<zj<b whenever i<j, and z;—»a as i» — o0, z;>b as j— + .

Remark 4.25. Let Ge.%. Because of Lemma 4.23(a), if g .= ¥(G) does not go to 0
to the right then there exists j' € Z such that all the zeros of g in [z, b) are isolated and
of multiplicity one, and in addition {g =0} N[z, b) = QN [zy,b). For all le Z, z; will
henceforth denote an arbitrary point in (z;, z;;1). Accordingly, if g does not go to 0
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to the right then there exists j'eZ such that g(Z;)g(Zj+1) <0 for every j=j'
Analogously, using now Lemma 4.23(b) we see that if g does not go to 0 to the left
then there exists i/ €Z such that g(z;)g(z;—1) <0 for every i</’

The following theorem will play a decisive role in the proof of Theorem 4.12.
Theorem 4.26. Let g, =Y (Gy), g2 = Y(Gy), where G, Gr€ .
(a) Assume g, does not go to 0 to the right. Then there exists

lim 91(%)
x1h gz(x)
x¢Q

light = , — 0 <ljgn < + 0.

(b) Assume g, does not go to 0 to the left. Then there exists

here = lim 29
xla gz(x)
x¢Q

@

, — 0K et < + 0.

Proof. To prove (a) assume that g, — 6g; does not go to 0 to the right for any
0eR\{0}. Otherwise /ighy = 1/60 for some 0, and therefore (a) is obvious. Then since
both ¢, and g, — 0g; do not go to 0 to the right, using Remark 4.25 we deduce that
there exists j/(0) € Z such that for every j=j'(0),

92(%)92(%+1) <0 and  [92(Z)) — 0g1(Z))][92(Z+1) — bg1(Z;11)] <O.
Hence, either
900 0910 _ | 001 (x)

0< for every xe(zyg,b)\Q
50 500 y x€(zj0),b)\
or
92(x) — 091 (%) 091 (x)
0> =1- for every xe(zyg,b)\Q.
920%) 920 Y xe G0
Suppose
lim inf g1(X)<y< lim sup g1(X)7 p#0. (10)
xth ga(x) x1h g2(x)
xX¢Q x¢Q

We have just proven that there exists j/(1/y) € Z such that either

91(x)
792(x)

<1 for every xe(zj(y),0)\Q
or

———=>1 for every xe(zyy),b)\Q.
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In either case (10) is contradicted. Thus,

lim inf gi(x) _ lim sup gl(x),
xth  ga(x) b ga(x)
X¢Q x¢Q

and hence the limit exists. So (a) is proved. The proof of (b) is similar. O

Definition 4.27. Let Gy, G,€.%;. We say that g; .= ¥(G)) and ¢, .= W(G,) have the
same right level (same left level) if either g; and g, go to 0 to the right (to the left) or
g> does not go to 0 to the right (to the left) and

il (gt
x X xTa X
x¢Q 92 xX¢Q g2

The functions g; and g, have the same level if they have the same right and left
levels. Finally, we say that the function g; has a lower right level than g, (lower left
level than g,) if g, does not go to 0 to the right (to the left) and

tim 900 ¢ [ fim 2 _

xTh X xTh X
b g2(x) s g2(x)

Lemma 4.28. Let Gy, Gye Sy, and let g, .=V (G)), g2 = P(Ga).

(a) Assume that for some pueN and for all ¢ sufficiently small,? gy, g», and gi — £g»
have no double zero in [x 0 b), and

{gl = 0}m[xju7b) :{92 = O}m[xjﬂab)
={g1 —eg2o =0} [xj“?b) =Qn [xjﬂ7b)'
Then g, does not have a lower right level than g,.

(b) Assume that for some ueN and for all ¢ sufficiently small, g1, g> and g, — €29
have no double zero in (a, x, |, and

{91 = 0}~ (a,x,) = {g2 = 0} (@ x,
={g1 — 092 =0} n(a,x,] = Qn(a,x,].

Then g; does not have a lower left level than g,.

2This means 0, |¢| small enough.
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(c) Assume that for some peN and for all ¢ sufficiently small, g1, g> and g1 — eg> have
no double zero in J\(x,,x, ), and

{91 = 0} (1\(x,.x,)) = {92 = 0} (N\(x,,.x,,))
— {91 — 02 = 0} " (\(x,.. %, )
— QA (¥, %,,))-

Then g, does not have a lower right or left level than g,.

Proof. Recall that Q = {z;} ez and that for all je Z, Z; denotes an arbitrary point in
(zj:2j+1)- To prove (a), consider a z; €[x, ,b). Then we see that for all ¢ sufficiently
small, g1, g», and g; — eg> have no double zero in [z;,b), and

{91 =0}z, 0) = {92 = 0} [z, b) = {g1 —eg2 = 0} N[z, b) = QN [z, b).
Therefore, for all j=;' and for all ¢ sufficiently small we get
(1) 91(£)g1(Z+1) <O,
7))

g1
(i) ¢2(2))g2(Z7+1) <0, and
(i) [g1(Z)) — €92(2)][91(Z41) — €92(2141)] <O.

Take now an ¢ so that (iii) is valid with ¢ = ¢, and in addition
e19192>0 and |gi|>|e1g2] on (zj,zy41). (11)
Then using (i), (ii) and the first inequality in (11), we deduce that
£19192>0 on (zj,b)\Q.

From (11) it is easy to check that g (g1 — €1¢92) >0 on (zj, zy41). Hence, using (i), and
(ii1) with ¢ = ¢, we obtain

gi(g1 —€192)>0 on (z7,b)\Q.
Finally, as

£19192>0 and ¢1(g1 — €192)>0 on (z;7,b)\Q,
it is easy to see that |gi|>|e1g2| on (z7,b)\Q, whence

fim 1910 g,
x1b g2(x)]
xX¢Q

Thus, g; does not have a lower right level than g,. This proves (a). The proof of (b) is
similar.

To prove (¢), note that the hypotheses of (a) and (b) hold simultaneously, and thus
g1 does not have a lower right or left level than g,. O
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Remark 4.29. We now construct a suitable basis for ;. We choose m; — 1 points
{3 " in the interval (x,+,x,;) in the following way. Take 7 points in (x_1, x1) and
one point in each of the components (x;,xi+1), i=1{,1f +1,...,=3,-2 and i =
1,2,...,y7 —2,J7 — 1 in such a manner that y; <y, <--- <y,,,_;. We shall use these
points, together with a set of replacement points y} <y, <...<y,, | to obtain the

splines in the basis for &, where {y} };;" n{y};, = 0 and each y, is taken in the
same component in which yy is. Using Property [JKZ] in the m;-dimensional WT-

ml 1 m1 1

1 .
WL’ is an alternating set.

space .1 we obtain a spline Vye.%\{0} for which {y;};"
Note that by the location of the points {yk}k:1 , 1f Vo has a zero interval then V)
vanishes identically. Thus, V) has no zero interval. Applying now Lemma 4.11(a) to

the restriction of Vg to (x,+,x,;), whichisin &+ -, we see that { v} are the only

N
zeros (of multiplicity 1) of Vj in [x,]+, x,-]. We now extend {Vy} to a basis for 7.
For each /= 1,2, ...,my — 1, consider the set {y;}/" ", with y} = yy for k#/ and
yf = ). From this set, V; is obtained in the same way as ¥, and therefore it has the
same properties; ¥ has the only zeros (of multiplicity 1) y{,)%, ..., ), _ in iy X0
It is thus easy to see that the set { Vo, V1, ..., Vin,—1} is linearly independent and it is
therefore a basis for ;. We say that this basis is obtained by the replacement method
based on the set {y;}7";", with the replacement points y},y}, ..., Vo _1- For 1=
0,1,...,m; — 1, every V; has m; — 1 sign changes and has no zero interval. Let
vy =Y(V),[=0,1,...,m — 1. Then {vy, vy, .. vm1 1} is a basis for W(%1). In the
following theorem we shall use the splines {v;}}";", as well as the points {y}7—' for
each/=1,2,...,m — 1.

Theorems 4.30 and 4.36 are the key to constructing appropriate WT-subspaces of
1. In one of these subspaces we will find an Hy with the property that iy = W (H))
makes Theorem 4.12 to hold. Theorem 4.30 establishes five properties for, in

particular, the space ¥ (= Y?’O). We will prove in Lemma 4.33 that .} indeed
satisfies these properties.

Theorem 4.30. Assume that y?’r is an (my — 1)-dimensional WT-subspace of %1,
0<t<n—1-a(y,), withabasis {Vy", V)", ..., V" |}, and such that the following
properties hold:

(a1) For each 1 = 0,1,...,my — 1 — 1, the spline V,O’T changes sign at the my — 7t — 1
points y"l,yé, '-~vy£n,7171a whence it has my —© — 1 sign changes. Moreover, for
each 1=0,1,....,m —1—1, v?’f = lI’(V,O"T) is proportional to v on (a,x,- ],
and v} has no zero interval in (a,x, ).

(a2) Let GEV?’T‘ Then for every ve N, the restriction of g = ¥(G) to (x,,, x, ) has at
most m, — 1 — 1 sign changes.
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asz) Let Ge " and assume that for some ueN, the restriction of g (= to
Let Ge S and h N, th cti ¥ (G
(X, xjﬂ) has m, — t — 2 sign changes. If g does not go to 0 to the right nor to the

left and the broken line ¢"*~2) has no zero in some interval [Xi,, Xi,+1], then g has no
double zero, and

{g=0}n(\(x,,x,)) = QN (J\(x,,,x,,)).

(a4g) Let Gey?’T and assume that for some peN, the restriction of g (=¥ (G)) to
(1,5 xjﬂ) has m, — © — 1 sign changes. Suppose also that g does not go to 0 to the
right nor to the left. Then g has no double zero, and

{9 = O}H(A(xlu,xj ) =Qa(N\(x,,x,,)).

Moreover, g2 has at least a zero in [x;,x;,1], all ieZ.
(as) For each I=0,1,....m —1— lfl) (= (VOT)) does not go to 0 to the right,

then v * has no zero interval, all the zeros of Uz * have multiplicity one, and

{7 =0} n(\(x,x,,)) = QN (I\(3,,x,,)).

vag’f does not go to 0 to the right, then

() The set V™' ={GeS)" :V(G) has a lower right level than v)*} is an
(my — © — 1)-dimensional WT-subspace of VOT

(il) There exists a basis {Vg‘”l, VP‘TH V,?IH'I ,} for yo U such that 90 1 and
this basis fulfill the analogs of (a;)— (as) with T+ 1 in place of 1, say (a})—(a%),
respectively.

Before proving Theorem 4.30, we need to show some results.

Proposition 4.31. Let 5”?"1 be an (my — t)-dimensional WT-subspace of %1,
0<t<n—1—a(y,), with a basis {V)", V", ... VOT .1} Assume that 9" and

this basis satisfy (a1) of Theorem 4.30, and let Gy ey? T. If [x,,, xp] is a zero interval of
Go, y7 — 1<)’ <y, then Y(Gy) vanishes identically on [x,,b).

Proof. Let Gye %" and assume that [x,,, x;] is a zero interval of Gy, j7 — 1</ <y,
We claim that Gy = 0 necessarily. Suppose, contrary to our claim, that [x,, x;] is a
zero interval of Gy, with ;T —1t<ip<j, and Gy(x;+1)#0. On the other hand, it
follows from (a;) that VOO’T has simple zeros at the points yi,y2, ..., Vm —r—1, Which
are in (x,,,x,- ) S(x,, ;). Then Gy — eV isin £ and it has at least m; — 7 — 1
sign changes on (x,,,x;,) for all ¢#0. Moreover, since Gy(x;,+1)#0, it is easy to see
that we can choose ¢ sufficiently small and with a suitable sign in such a way that
Gy — ¢ Vg " has another sign change on (x;,, x;,+1). Therefore, Gy — ¢ V(()) " has at least
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my — 1 sign changes, which contradicts that Go—e’Vg’T is in the (m; —1)-
dimensional WT-space y?‘r. Thus, Go =0 and so the claim is proved. Then it
follows from Theorem 4.19 that W(Gy) vanishes identically on [x,,b). O

Lemma 4.32. Let Y?"f be an (my — t)-dimensional WT-subspace of &1, 0<t<n —
1 —a(y,), with a basis {V", V™, ..., Vy(;){,rffq}- If 9 and this basis satisfy (a;)—(as)
of Theorem 4.30, then there holds

@) The splines v)" (=¥(V"), [ =0,1,...,m; —t — 1, have the same right level.
Hence, vgJ does not have a lower right level than Y (G) for any Gey?’f.

(b) Ler Gley’?‘r and suppose that g, =Y (G\) has m, —t—1 sign changes on
(x,ﬂ,xjﬂ) for some neN. Then gy has the same right level as Ug’T.

(©) Let GOGV?‘T\{O}, and suppose that [x,,x, 1| is a zero interval of Gy. Then
Y(Gy) has the same right level as vg"f.

To prove (a) and (b) we shall use the following claim.

Claim 1. Let G, ey(l)"f with m, — t — 1 sign changes on (xlu,xju)ﬁ)r some peN. If'v?,’I

(= ‘P(Vl(,)"r)) does not go to 0 to the right for some I', 0<I'<my — 1t — 1, then g, =
Y(G,) does not go to 0 to the right nor to the left.

To prove the claim, suppose v(l),’f does not go to 0 to the right. So taking into account
(as) we can use Lemma 4.24 with G = Gy, V = V,(,)’T and ¢t = 7 + 1. Assume now that
g1 goes to 0 to the right. Then using (d) in Lemma 4.24 we deduce that there exists a
k>p and large enough for which ¢y — sv?,"f has at least m, — t sign changes on
(x,,x, ) for all ¢ sufficiently small and with a suitable sign. But this is in
contradiction with (a,) applied to G| — SVI(,)’T GV?’T. The same argument proceeds if
g1 goes to 0 to the left. Therefore, the claim is proved.

Observe that, due to (a;), for / =0,1,...,m; —t — 1 the spline VJO'T satisfies the
hypothesis on G in Claim 1. Hence any result we get for Gy (g;) is also valid for each
V,O’T (v?’r). For instance, we deduce that v(,)’r goes to 0 to the right if and only if vg’f
goes to 0 to the right. If U?’T goes to 0 to the right for every / =0,1, ...,m —1— 1,
then it is clear that any G in 3’(1)"1 satisfies that W(G) also goes to 0 to the right, and
therefore W(G) has the same right level as vg’f. Thus (a) and (b) are true in this case.
Assume now that v?’f does not go to 0 to the right for any / =0,1,...,m; — 17— 1.
Let Gy be in y?’f with m, —© — 1 sign changes on (x,,,x, ) for some peN. Then
Claim 1 implies that g; (= W¥(G;)) does not go to 0 to the right nor to the left.
Accordingly, for every [ =0,1,...,m; —t— 1, each of the splines G, and V,O’T
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satisfies the hypotheses of (as), and it is not difficult to see that also G| — sV,O’T

satisfies the hypotheses of (a4) for all ¢ sufficiently small. Hence, we deduce that g,

v? ,and g; — svl " for all ¢ sufficiently small, have no double zeros and

{91 = 0} A (N\(x,,%,,)) = (&7 = 0} A (I\(x,.,%,,)
= {gl - 8”1 = 0}0( (x1y7x‘]“)) =Qn (J\(xlwxj,l))'

Therefore, Lemma 4. 28(0) shows the following assertion: g; does not have a lower

right (or left) level than v;” 9t 1 =0, 1, ...,m; — 7 — 1. In particular it follows that for

[=0,1,...,m — 1 — 1, the splines vl " have the same right (and left) level. Hence, it

is easy to see that vg’I does not have a lower right (or left) level than W(G) for any
Gey?’r. This proves (a). Now both (a) and the above assertion prove (b).

To prove (c), let Gy ey(l)’f\{O}, and suppose that [x,,, X, —T— 1] is a zero interval

of Gy. Note that from (a) it is sufficient to show that gy .= W(Gy) does not have a

lower rlght level than Uo This is immediate if UO goes to 0 to the right. So assume

that Uo " does not go to 0 to the right. Under this assumption, we first demonstrate
the following two claims.

Claim 2. For all ¢ sufficiently small, gy — svo " has no double zero, and

{g0 = evg™ = 0} A (\(3,1,.x,,)) = QO (J\ (3, x,,).

To prove the claim, note first that gy — 808” does not go to 0 to the right nor to the
left for all ¢ sufficiently small because vg"f does not go to 0 to the right nor to the left.
From (a;) and the location of the points y1,y2, ..., Vi —c—1, Vg‘T has m; — 7 — 2 sign
changes on (x,+, X, ——1). Then for all ¢#0, the spline Gy — an’z has m; —t — 2 sign
changes on (xlr,le—,r,l) since [x,l,x‘,]—,f,l] is a zero interval of Gy. Furthermore, as
Gy #0, from Proposition 4.31 we deduce that [x,,, le—,r,l] 1s a maximal zero interval
of Gy. Therefore, it is clear that for all ¢#0, small enough and with a suitable sign,
Gy — SV(())’T has a sign change on (le—,r,l , le—,f). Thus, there exists an g, sufficiently
small for which gy — svg'T does not go to 0 to the right nor to the left and Gy — ng’T
has m; — 7 — 1 sign changes on (xll+, X, —) for all & satisfying 0<eeg <éj. Then
applying (a;) to Gy — SV(())’T, in y?’r, we see that Gy — ng’T has m; —t — 1 sign
changes on (x,,x, ). Accordingly, for all ¢ satisfying 0<eeo <el, using (as) we

deduce that gy — gvg"f has no double zero, and
{gO - SUg’r = 0}ﬂ (J\(xlwle)) =Qn (J\(xll ) le))'

Now, in order to complete the proof of the claim, we show that there exists an ¢;
sufficiently small and satisfying gy¢; <0 for which gy — 81)8’1 has no double zero, and

{90 — sv =0} (N\(xy,x,,)) = Q@ (J\(x,,,x,,))
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for all ¢ satisfying 0 <eg; <s%. As [x”,le—,f,l] is a maximal zero interval of Gy, the
broken line Gé"iz) vanishes identically on [x,,x, ] and it has no zero in
(le—,f,l,le—,r]. Suppose, without loss of generality, G((]"fz) >0 on (le—,r,l,le—,r].
For all ¢ satisfying 0 <eey<e2, the spline Gy — ?,Vg"T has m; — v — 1 sign changes on
(X,r,%,;—<). Then applying n — 2 times Lemma 4.8 we see that the broken line (Go —
ng’T)("_2) has a simple zero in each (x;,x;41), i = 1,17 +1,..., 57 — 7 — 1. Hence,
(Go—¢ Vg’r)<"72>(xh—,r,1)<0 for all ¢ sufficiently small and satisfying 0<¢'eg <&,
because (Gy — & Vg’f)("*m (x,-—)>0. Then it is not difficult to see that there exists a
sufficiently small ¢; satisfying &gy <0 for which gy — svg’f does not go to 0 to the right
nor to the left and (Gp — 8V8’T)("_2) >0 on [x,- . 1,x,-] for all ¢ satisfying
0<eg SS%. Hence, using (a4) we deduce that Gy — ng'f has m; — 7 — 2 sign changes
on (x,,x, ) for all ¢ satisfying 0<se; <ef, because Gy — Vg has m; — 1 — 2 sign
changes on (x,,,x,- ) for all e 0. Accordingly, for all ¢ satisfying 0 <ze, <él, (a3)

applied to Gy — an’T shows that gg — svg’T has no double zero, and {gy — avg‘r =
0} (J\(x,,x,,)) =Qn(J\(x,,x,,)). So the claim is proved.

Claim 3. The spline go has no zero interval in [x 1 b).

Assume, contrary to our claim, that gy has a zero interval in [x Jl—,f,l,b). By
hypothesis, [x,l,le—,f,l] is a zero interval of Goey?’f\{O}. Therefore, from
Proposition 4.31, [x,, X, 1] is a maximal zero interval of Gy. Then, according
to our assumption, there exists a jo > j7 — 7 — 1 such that go has no zero interval in

[X,- -1, Xj,] and the restriction of go to [x, .1, x;] is in 5”317 We first show

——Ljo~
that jo < j, is not possible. Indeed, suppose jo < j,. Recall that Gy — ng’T has m; —

T — 2 sign changes on (x,l,le—_r_l) for all é#£0. As G is in ,9)311171%], it follows that

for all ¢ sufficiently small and with a suitable sign, Gy — ng’T has another sign
change on (x, -1, x, ). The same fact is valid on (x;,_1,x;,), but both signs of &
cannot be the same, because Gy — /IV((,)"T, in V?’T, cannot have m; — 7 sign changes for
any 1. We conclude that Gy — aV(()“ has m; — © — 1 sign changes for all ¢ sufficiently
small. This contradicts the last sentence of (as) because we have seen in the proof of
Claim 2 that for all ¢ sufficiently small and with a suitable sign, (Gy — ng "T)<"72> has
no zero in [le—,f,l, le—,f]. Thus jo>y,. In this case, we will also obtain a
contradiction. Indeed, if jo > j,, then it is easy to see that for all ¢#0, small enough
and with a suitable sign, gy — ev)* has a simple zero z(¢) e (xj,_1,X;), z(€) =X, as
&¢—0. Therefore, it is clear that for all ¢#£0, small enough and with a suitable sign,
go — svg’T has a simple zero in (J\(x,,,x, ))\Q, which contradicts Claim 2. Thus, we
conclude that gy has no zero interval in [x Jr,f,l,b), and so the claim is proved.
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From Claim 3, g9 does not go to 0 to the right. Then Lemma 4.23(a) implies that

there exists u large enough such that gy has no double zero in [x o b), and
{90 =0}n[x, .b) =Qnlx, ,b).

As vg’r does not go to 0 to the right, (as) implies that vg’r has no double zero, and
{vg" =0} (J\(x,,,x,,)) = QN (J\(x,,, X,,)).

From Claim 2, for all ¢ sufficiently small, go — avg‘T has no double zero and
{go0 — ev)" = 0} N (J\(x,1,X,,)) = QO (J\(x,, X))

Thus, it is clear that Lemma 4.28(a) applies to go and vg‘I to conclude that gy does

not have a lower right level than Ug"r. Therefore, (c) is proved. [
We are now in a position to prove Theorem 4.30.

Proof of Theorem 4.30. Assume that vg‘r does not go to 0 to the right. Then Theorem
4.26 shows that there exists lim,j, (g(x)/vg"f(x))7 x¢Q, for all geW(¥). It is
obvious that V""" becomes a linear subspace of &9, Let

, =12 ...om —1—1.

Then it follows from (a) in Lemma 4.32 that 0<|0?"T|< w,l=1,2,....m —1t— 1.
Therefore, v?’f - 9?”1 vg’f has a lower right level than vg’f. Moreover, it is not difficult
to see that {V,O"T - 0‘;’1 Vg"T i “!is linearly independent. Then V?’”l is precisely
the (m; — t — 1)-dimensional space spanned by this basis. We now show that 9’?’“’1
is a WT-space. As every G in 5”?’”1 is also in the (m; — 7)-dimensional WT-space
y?’r, G has at most m; — 7 — 1 sign changes. On the other hand, ¥(G) has a lower
right level than vg‘f. Thus using (b) in Lemma 4.32 we conclude that G has at most

m; — T — 2 sign changes. So 5”(1)’”1 is weak Chebyshev. This proves (i).
To prove (ii), for each [ =0,1,...,m; — 1t —2 we use Property [JKZ] in the
(my — t — 1)-dimensional WT-space )" to obtain a ¥""*' € #)"*"\{0} for which

{L}{" % is an alternating set. Observe that {y}}}",* % is in (X, X7 1) (Remark
4.29).
We claim that for each /=0,1,...,m — 17— 2, V,O’r+l has no zero interval in

(X1, X, ——1]. Assume to the contrary that for some 7, Vl(,)’Hl has a zero interval in
(X1, X,-——1]. Then the location of the points Yoy, .y ., implies that
[x,l,x_,l—_f_l] has to be a zero interval of Vl(,)‘”l. Under this condition, and taking
into account that V9" is in %9, we deduce from (c) of Lemma 4.32 that v)"*' has
the same right level as Ug’f, which contradicts the definition of V,(,)’”l. This proves the
claim. Therefore, each V""" changes sign at y|, ), ..., Vi _c_- As the restriction of
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every V,O’T+1 to [xlr,le—,f,l] isin &+ - .y, it follows from Lemma 4.11(a) that

those points are the only zeros (of multiplicity 1) of Vl0 “in [x,r, X Jl—,f,l]. Then it is

V]OA'T-H mp—1—2

easy to see that the set { i~ ~,obtained by the replacement method based on

{y )72, is linearly independent. Therefore, {V,O s “2 is a basis for gt
satisfying that for / = 0,1, ...,m; — 7 — 2, the spline V,O’T+l changes sign at the m; —
T —2 points y{, 4, ... ¥ 5.

We now show that for / = 0,1, ...m; — t — 2, the spline V,O"T“ has no zero interval
in [x,,x,]. We have seen above that for each /, V,O”Hl has no zero interval in
(X1, X, —c—1]. Suppose that for some /, V,O’T‘Ll has a zero interval [x;,, x;j11], J; —

t—1<ip<y, — 1. Then V,O’TH\[M%] is in the (ip —1f)-dimensional WT-space
i+
S+, On the other hand, V,O’T+1 changes sign at the m; —t—2 points
g

Wb, oo Y oy, and by hypothesis, t<n — 1 — o(y,). Therefore,

m—t1—-2=y7 -1 +n—-1—-1-2
>y -1 +n—1-(n-1-0(y;)) -2

=y, —0ly) —1 +a(y;) -2
=iy — lT - 1.

This contradicts that %, is an (ip — 1] )-dimensional WT-space. Thus, for / =
e

0,1, ...,m; — 1 — 2, the spline VIO’T+1 has no zero interval. So to prove that U?‘T“ has

no zero interval in (@, x, | it is sufficient to show that v?’”l has no zero interval in
(a,x,,]. According to (a;), to achieve this result, and also to complete the proof of
(a}), we shall prove that v?’”l is proportional to v?’f, and so to v; as well, on
(a,le—,r,l]. Observe that for each /=0,1,...,m; —t—2, the m; — 1t — 2 points

V[O‘T+l and also of VIO’

Wb, oo Vi —_p are simple zeros of

T
‘[X,T ,xj]f,Fl] |[xl?r,le—,,,l]7

both in the space ,5”,1 ot Hence, using Lemma 4.11(a) we see that there exists a
constant, say 4;#0, such that VIO’T+1 = V,O"T on [x,,X, —.1]. Then applying
Theorem 4.19 to V""" — 2,77)" we indeed deduce that o} = 20" on (a, Xy ot)-
This proves (a}).

To prove (a}), let GGV?’TH. As ,5”?’”1 is contained in V?’T, applying (ay) to
Gey?‘f we see that for every veN, g (= W(G)) has at most m, — © — 1 sign changes
on (x,,x, ). So to complete the proof of (a}) it is sufficient to show that for any
veN, g does not have m, — t — 1 sign changes on (x,,, x, ). Suppose to the contrary

that for some peN, g has m, — v — 1 sign changes on (xlwau)’ Then (b) in Lemma

4.23 shows that g has the same right level as vg’r, which contradicts that G is in

%1 This proves (a}).
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To prove (a}), let Ge ,7?’”1 cy?’f and assume that for some pue N, the spline g
(= ¥(G)) has my — (t+1) — 2 sign changes on (x,,,x, ). Suppose also that g does

not go to 0 to the right nor to the left and that ¢g"~2 has no zero in some interval
[xi,, Xi,+1]- As g does not go to 0 to the right nor to the left, Lemma 4.23 implies that
g has no zero interval in J\(x,,, x J“). Consequently, to prove (aj) it suffices to show

that g has no double zeros and that g has no simple zero at points in (J\(x,, xjﬂ))\Q.
We shall use the following facts. As ug” does not go to 0 to the right (nor to the left),
(as) implies that vg’f has no zero interval and that all the zeros of vg"r have
multiplicity one. Furthermore, for all ¢ sufﬁciently small, g — avg"f does not go to 0 to
the right nor to the left. Finally, as ¢”"~? has no zero in [x;,x; 1], the spline
(9 — avg N "=2) has no zero in [xi,, xi,+1] for all ¢ sufficiently small. Then we can apply
Lemma 4.24 with Vg " in the place of V.

Suppose that 2’ is a double zero of g and z'e (/\Q) U (x,,, X, ). Choose a x> u for

which z'€ (x,,, x, ). Then it follows from Lemma 4.24(a) (with Vg " in the place of V)
that g —&v)” has at least m, —(t+1)—24+2=m,—t—1 sign changes on
(x,,,x, ) for all ¢ sufficiently small and with a suitable sign. From (a,) applied to
G—eV)", in %7, we see that g — ev)” has at most m, —t — 1 sign changes on
(x,,,x, ) for each ve N. Therefore, the spline g — avg’T has m,, — 7 — 1 sign changes on
(x,,,x,, ) for all ¢ sufficiently small and with a suitable sign. Accordingly, we can
choose an ¢ sufficiently small and with a suitable sign in such a way that g — svgr
does not go to 0 to the right nor to the left, g — 8U8 " has m, — t — 1 sign changes on
(x,,x, ), and (g — svg’z) "=2) has no zero in [x;, x;,1]. This contradicts (a4) applied
to G —&Vy e )", Thus, g has no double zero at points in (J\Q) U (X1, %))

Suppose now that 2" €eQn (J\(x,,,x, )) is a double zero of g. Pick a x>y for which
"€ (x,,x, ). Then from Lemma 4.24(b), g — avo has at least m, — (t+1) — 2+
1 = m, —©— 2 sign changes on (x,.x, ) for all & sufﬁ01ently small. Hence, applying
(az) to G — ng’T, in y?’f, we deduce that g — svo " has m, — t — t, sign changes on
(x5 %, ), 1<1,<2, for all ¢ sufficiently small. Thus, we see that for all ¢ sufficiently
small, the following conditions hold:

o g— svo does not go to 0 to the right nor to the left;
® (g-— 81)0 "2 has no zero in [x;,, Xi,+1];

® g— pvo * has m, — t — 1, sign changes on (x,,x, ), 1<7,<2.

Hence, if 7, = 1 for some ¢ satisfying the above conditions, then (a4) applied to
G— SVg e V?’T is contradicted. Thus, 7, = 2 for all ¢ sufficiently small. Then for all ¢
sufficiently small, (a3) applied to G — ng * GV?’T shows that g — evg'f has no double
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zero in J\(x,,,x, ), and

{g—ev)" = 0} (I\(x,,,x, ) = QN (J\(x,,, X, ).

On the other hand, we apply Lemma 4.23 to g and assume that « is so large that we
deduce that all the zeros of g in J\(x,,, x, ) have multiplicity one, and

{g = O}m(J\(xl,<)xJK)) = Qm(‘]\(xzwxj,\.))'

Furthermore, as vg’f does not go to 0 to the right, (as) applied to V(? T implies that all
the zeros of vg’T have multiplicity one, and

{007 = 0} A J\(x1,,x,,) = AT\ (x,,, ;).

We are now in a position to apply (c¢) in Lemma 4.28 to show that g does not have a
lower right level than vg’z. But this contradicts that G is in y?‘”l. Consequently, g
has no double zero at points in Qn (J\(x,,,x, ).

We have just proven that g has no double zero. So to prove (a}) it remains to show
that g has no simple zero at points in (J\(xlu,xju))\Q. This proof follows in a similar

way to that of the previous case. So (a}) is proved.

We now prove (a}). Let Ge 5”?’”1 and assume that for some pe N, the restriction
of g (=%¥(G)) to (x,,,x,,) has m, — (t+1) — 1 sign changes. Suppose also that g
does not go to 0 to the right nor to the left. We shall apply Lemmas 4.24 and 4.28 to
g and vg‘r. For this we shall use, according to (as), that vg’r has no zero interval, all
the zeros of vg’T have multiplicity one, and

{00" = 0} (\(x,x,,)) = Q0 (T\ (3, x,,)-

We now prove that g has no double zero, and {g=0}n(J\(x,,x, )) =
Qm(]\(x,u,xjﬂ)). As g does not go to 0 to the right nor to the left, Lemma 4.23
implies that g has no zero interval in J\(x, , xjﬂ). So it is sufficient to prove that g has
no double zero and that g has no simple zeros in (J\(x,,, x J“))\Q. To prove this
observe that if g has a double zero, or a simple zero in (J\(x,,,x, ))\Q, then Lemma

4.24, in conjunction with (a,), shows that for each x>y and large enough, g — svg’f

has m, — 7 — 1 sign changes on (x,,x, ) for all ¢ sufficiently small. Now the proof
follows in a similar way as that of (a}), and we again deduce the contradiction that g

does not have a lower right level than vg’r. Thus, g has no double zero, and
{g = 0} N (J\<x1“a xjﬂ)) =Qn (J\(xl!mxju))'

To prove that g"~?) has at least a zero in [x;, x;,1], all ie Z, suppose to the contrary
that there exists i€ Z such that g”~? has no zero in [x;,,x;1]. Then since g has
m, — t — 2 sign changes on (x, , xju), it is easy to see that for all ¢ sufficiently small

the following conditions hold:

o g— svg’f does not go to 0 to the right nor to the left;
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® (g-— svgf) % has no zero in [x;,, Xi41];

° g avo * has m, — © — t, sign changes on (x,“,xjﬂ), 1<t <2.

We now apply (as) to deduce that ¢, = 2 necessarily, whence (a3) implies that g —
svo * has no double zero, and

{g =" =0} (J\(x,,,x,,)) = @ (J\(x,,,x,,))

for all ¢ sufficiently small. Then observe that we can apply Lemma 4.28(c) to g and
8T to conclude that g does not have a lower right level than vg"r, which is a

contradiction. Thus, g"~2 has at least a zero in [x;, x;;], all i€ Z. This completes the
proof of (a}).

We now prove (a%). From (a}), U?’T-H has no zero interval in (a, x, ]. Furthermore,
if v?’”l does not go to 0 to the right, then Lemma 4.23(a) implies that u?’”l has no
zero interval in [x, ,b). Therefore, v,’ 971 has no zero interval. So the first statement in
(a%) is proved.

From (a}), V,O’T+l has exactly m; —t — 2 (simple) zeros in (x,;,x, ). So we can
apply (a}) to V,O’Ile eV since v 971 does not go to 0 to the right nor to the left.
Then U?"TH has no double zero, and

{UOTH O}Q(J\(xmx./])) :Qf\(.]\(x,],x‘,])).

Thus, counting the points of QN ((x,,, x; )\(x,,x,,)), k> 1, we deduce that v?’”l has
m, — 1 — 2 simple zeros in (x,,x, ), k=>1. To complete the proof of (aj) it remains
to show that v?’”l has no zero of odd multiplicity greater than two. Assume to the
contrary that v?’”l has a zero of odd multiplicity greater than two at a point
ze(x,,x, ), k=1. From (as), all the zeros of v(l)’f have multiplicity one, and

{U?A’T = 0}ﬁ (J\(xllvle)) = Qn(‘]\(‘x'l’xll))'

Using also (a;) and (a}) we see that all the zeros of 1;0 et

are zeros of v?’r as well.

Accordingly, z is a zero of u, * of multiplicity one. Therefore, it is an easy exercise to
prove that for all ¢ sufficiently small and with a suitable sign, vo o w, " has at least
three different simple zeros, say z(¢), z2(e) and z3(e), satlsfymg z1(e) 1z as -0,
z5(¢) =z and z3(¢) | z as €—>0 Then for all ¢é#0, small enough and with a suitable
sign, the spline v?’”l — sv, " has at least m, — 1 —2+2 =m, — 1 simple zeros in
(x,,,x, ). This contradicts (a) applied to V)T — e e )7, Thus, all the zeros of

v?’r“ have multiplicity one. This proves (a%), which completes the proof of (ii). [

Lemma 4.33. For each 1 =0,1,...,my — 1, let VO’0 = V). Then the m;-dimensional
WT-space 9V° (= 1) and the basis {V°, V{0, .. VO0 \} satisfy properties (a;)—
(as) of Theorem 4.30 with t = 0.
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Proof. By the construction of V; in Remark 4.29,/=0,1, ...,m; — 1, the spline VIO’0
(= V1) changes sign at the m; — 1 points y{,y5, ...y, _,. So V7 has m; — 1 sign
changes, since V,O"O is in the m;-dimensional WT-space ¥ (= Y?’O). Lemma 4.21
now implies that U?’O (= v;) has no zero interval, and thus it has no zero interval in
(a,x, ]. This proves (a;) with = 0.

Observe that (a;) holds with 7 =0 because the restriction of g (= ¥(G)) to
(x,,,x, ) is in the m,-dimensional WT-space &,.

To prove (as3), let Gey?‘o and suppose that for some peN, the restriction of
g (= ¥(G)) to (x,,,x, ) has m, — 2 sign changes. We are also assuming that g does

not go to 0 to the right nor to the left and that the broken line ¢”"~? has no zero in
some interval [x;, x; +1]. Theorem 4.19 implies that

{9= O}m(J\(x,,,le))QQm(J\(x,],xh)).

On the other hand, as g does not go to 0 to the right nor to the left, Lemma 4.23
implies that g has no zero interval in J\(x,,,x, ). In this way, to see that g has no
double zero, and that

{9 =0tn(\(x,,x,,)) = Q0 (N\(x,,x,,)),

it is sufficient to demonstrate that g has no double zero, and that g has no simple zero
in (J\(x,,, xjﬂ))\Q. As V(?"O has m; — 1 sign changes, Lemma 4.21 implies that U(o),o has
no zero interval and that all the zeros of Ug,o have multiplicity one. Hence, we can
apply Lemma 4.24 with ' = Vg 2 Suppose that g has a double zero, or a simple zero
ata pointin (J\(x,,, x; ))\Q. Then Lemma 4.24 (with Vg ¥ in the place of ¥ and with
t = 2) implies that in either case, for a k large enough, g — 81)8’0 has m, — 1 sign
changes on (x,,x JN) for all ¢ sufficiently small and with a suitable sign. Then from
Lemma 4.21, (g — evg’o)("fz) has a simple zero in (x;, x;41), all ieZ. But, as g2 has

no zero in [x;,x;+1], for all ¢ sufficiently small (g—sug’o)(”*z) has no zero in

[xi,, Xi,+1]- So we obtain a contradiction. In consequence, g has no double zero, and g
has no simple zero in (J\(x,,,x, ))\Q, which proves (a3) with 7 = 0.
Finally, note that (a4) and (as), with = 0, follow from Lemma 4.21. [

Due to Remark 4.29, V(())’0 (= Vy) has m; — 1 sign changes. Then by Lemma 4.21,
Ug,o has no zero interval, and therefore Ug,o does not go to 0 to the right (nor to the
left). From Lemma 4.33, y?’o and the basis {Vg"o, V?’O, e V,‘,’;f)_
(a;)—(as) of Theorem 4.30. We thus apply Theorem 4.30 to the space 5”?’0 to get the
(m; — 1)-dimensional WT-subspace V?’l and the basis {Vg’l, VIO"I, e Vrg’ll_2}, which
fulfill (a;)—(as) of Theorem 4.30 witht = 1. If 1<n — 1 — ¢(y,) and vg’l (= lI’(V(())’l))
does not go to 0 to the right, then Theorem 4.30 again applies to get the (m; — 2)-
dimensional WT-subspace %) and the basis {V{7, V)72, ..., V,(,)1‘1273}7 which fulfill

|} satisfy properties
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(a;)—(as) of Theorem 4.30 with t = 2. Proceeding in this way, if

=14+  max {t: )" (=¥ (V7)) does not go to 0 to the right},

0<t<n—1-0a(y,)

then it is clear that we obtain the WT-subspaces

(1 =)WV 5o

with basis

0,0 00 0,1 0,1 0,7 0,
{VOV ) V 1} {VO y e V 2} {VOT V i TH— 1}7

mp—

respectively. As an immediate consequence of this discussion, we have the following
result.

Corollary 4.34. For 0<t<1", the set V?'T is an (my — t)-dimensional WT-subspace of
S1. Also, S)7 and the basis {Vy*, V)", ..., V}?ﬂf—r—l} Sulfill properties (a;)—(as) of
Theorem 4.30 as well as Proposition 4.31 and Lemma 4.32.

In the sequel we shall use Corollary 4.34 without an explicit reference whenever we

apply (a;)—(as) of Theorem 4.30, Proposition 4.31 or Lemma 4.32 to the spaces f/’(l)'f,
o<t

Remark 4.35. It is clear that vg’z does not go to 0 to the right if 0<t<1*. On the
contrary, we now assert that vg’f* (= ‘I’(Vg’r*)) goes to 0 to the right. Indeed, this
follows immediately from the definition of ¢* whenever t*<n—1-0(y,). So
consider ¥ =n — 1 — ¢(y,). From Theorem 4.19 we deduce that ¥(G) goes to 0 to

the right for all GGV;’J]. Hence, &, nY1< ,707

v
Furthermore,  dim (¥, n%1)=m —(n—1-0(j,)) =m — 1" =dim I

Thus, 9% = =, , 01 whenever t* =n—1-0(;,), and therefore )" goes to
0 to the right. This proves the assertion. Finally, using (a) in Lemma 4.32 we

conclude that for / =0,1,...,m; — 7 — 1, the spline v?’f goes to 0 to the right if and
only if 7 = t*.

Now let 7 be fixed, 0<t<7*, and consider the (m; — t)-dimensional WT-space
V?’T. In the following theorem we shall prove the existence of WT-subspaces of V?’T
“by lowering the left level”. In particular, the theorem establishes five properties for
. Lemma 4.39 shows that & indeed satisfies these properties. Note that if
7 =0, then Theorem 4.36 is analogous to Theorem 4.30.

Theorem 4.36. Let %" be an (m) — 1 — p)-dimensional WT-subspace of 937,

0<t<t", 0<p<n—1—a(n), with a basis {V§*, V}'\\, .., V7" |}, and such that
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the following properties hold.

(b1) For each 1 =p,p+1,...,m —1— 1, the spline V" changes sign at the m; —
T—p—1 points yi)ﬂ,yi)ﬂ, --~vy£n17r71’ whence it has my —1—p—1 sign
changes. Moreover, for each |=p,p+1,....m —t—1, /" :=P(V]") is
proportional to v?’r on [x,+y,,b), and v’" has no zero interval in [x,,,b).

(b2) Let Ge S, Then for every veN, the restriction of g == ¥(G) to (x,,,x, ) has at
most m, — 1t — p — | sign changes.

(bs) Let Ge " and assume that for some ueN, the restriction of g (= ¥(G)) to
(X, xjﬂ) has m, —t — p — 2 sign changes. If g does not go to 0 to the right nor to
the left and the broken line "= has no zero in some interval (X, Xj, 1], then g
has no double zero, and

{9 =0} A (\(x,,%,,)) = QA (\(x,,,x, ))-

(bs) Let Ge V" and assume that for some peN, the restriction of g (= ¥(G)) to
(x5 lel) has m, —t — p — 1 sign changes. Suppose also that g does not go to 0 to
the right nor to the left. Then g has no double zero, and

{9 =0} A (\(x,.x,,)) = QA (\(x,,,x, ))-

Moreover, g""=? has at least a zero in [x;,x;.1], all jeZ.
(bs) Foreachl=p,p+1,....m —1t—1,if 0" (=¥(V]")) does not go to 0 to the

left, then v)"" has no zero interval, all the zeros of v{"* have multiplicity one, and

{07.’1 = O}m(‘]\(xll7-le)) = Qm(-]\(x,”le)),
If vg’f does not go to 0 to the left, then

() The set S0 :={GeS"" . ¥(G) has a lower left level than vhT} s an
(my —t© — p — 1)-dimensional WT-subspace of I1".

(1) There exists a basis {V[’fill’I, V;’Izl’r, . V;T_lf_l} Sor S U such that s T and
this basis fulfill the analogs of (by)—(bs) with p + 1 in place of p, say (b})—(b),
respectively.

The proofs of Proposition 4.37 and Lemma 4.38 are analogous to that of
Proposition 4.31 and Lemma 4.32, respectively, and so we omit them. We only
remark that Vg T and vg’f must be here replaced with V'/»" and v/*, respectively. Also,
Lemma 4.23(b) and Lemma 4.28(b) have to be used in Lemma 4.38 instead of
Lemma 4.23(a) and Lemma 4.28(a), respectively.

Proposition 4.37. Let %" be an (my — t — p)-dimensional WT-subspace of 93",

0<t<t’, 0<p<n—1—a(un), with a basis {Vi~, V[;fl, s VT 1} Assume that
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" and this basis satisfy (by) of Theorem 4.36, and let Goe S4". If [xi, X, -] is a zero
interval of Gy, 11 <i'<1] + p, then ¥(Gy) vanishes identically on (a,x,-_].

Lemma 4.38. Let S7° be an (my — 1 — p)-dimensional WT-subspace of 937,

0<t<t", 0<p<n—1—a(n), with a basis {V*, V5, .., Vy© } If S7° and

this basis satisfy (b;)—(bs) of Theorem 4.36, then there holds

(@) The splines v)"* (=¥Y(V/")),l=p,p+1,....m —1—p—1, have the same left
level. Hence, v does not have a lower left level than ‘¥(G) for any Ges".

(b) Let Gie " and suppose that g1 = ¥(G) has m, —t — p — 1 sign changes on
(xl“,xju) Jor some peN. Then gy has the same left level as v/)*.

(¢) Let Goe S "™\{0}, and suppose that (X0 p115 X,y —<] is a zero interval of Go. Then
WY(Gy) has the same left level as vf)".

Proof of Theorem 4.36. Assume v/ does not go to 0 to the left. Then Theorem 4.26
shows that there exists lim. |, (9(x)/v)"(x)), x¢Q, for all ge'¥ (). It is clear that

1, ~ .
1T becomes a linear subspace of 977 Let

077 = lim U’ () l=p+1,p+2 ...,m —1—1.

0 (x)
;¢5p()

Then it follows from (a) in Lemma 4.38 that 0<|0)|< 0. So v)* — éf”rvﬁ‘f has a
lower left level than v/-*. Moreover, it is easily seen that

pT _ ApT ety —T—1
v 0 Ve

is linearly independent. Then &¢™'" is the (m; — 1 — p — 1)-dimensional space
spanned by this basis. We now show that 9% is a WT-space. As every G in &% *'"
is also in the (m; —t — p)-dimensional WT-space %}, the spline G has at most
m; — 1 — p — 1 sign changes. On the other hand, ¥ (G) has a lower left level than vf".
Thus, using (b) in Lemma 4.38 we conclude that G has at most m; — 1 — p — 2 sign
changes. Thus, 9 LT s weak Chebyshev. This proves (i).

To prove (ii), for each /[ =p+ 1,p+2,...,m — 1 — 1, we use Property [JKZ] in
the (m; —17— p — 1)-dimensional WT-space """ to obtain the spline

yIthte (0} for which {yfc};c";;_zl is an alternating set. Observe that
{yk}flpizl is in (4,41, X,;—) (Remark 4.29).

We now claim that for each / =p +1,p +2, ...,m; — 7 — 1, the spline V,”H’T has
no zero interval in [X'HPH’ X, —|. Suppose to the contrary that for some /', Vﬁ“’r

has a zero interval in [x,+,,.y,x;;—c]. Then the location of the points
2 : - 1,
VorasVhyss oo Vi ooy fOTCES [X;+1)01,%,- ] to be a zero interval of ¥}
Therefore, () in Lemma 4.38 applied to /"€ implies that W(V/*'") has
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the same left level than v, which contradicts the definition of ¥%*'". This proves
the claim. Thus, foreach I=p+1,p+2,....m — 1 — 1, V,”H"T changes sign at the
my —t—p—2pointsy, ;. y) 5 ..y . Asthe restriction of every V7' to the
interval [X’Tﬂ’“ , X, ] isin S v 4pr1, o it follows from Lemma 4.11(a) that those
points are the only zeros (of multiplicity 1) of V{’“"T in X141, %, —- Then it is
my—t—1

easy to see that the set {V/’H’T}IZPJrl ,

m—-t—1 : : p+loym—1—1 . : p+1,7
{yk}k:p+2, is linearly independent. Thus, {V] }l:p—H is a basis for 7|

satisfying that for /=p+ 1,p+2,...,m; —t — 1, the spline Vf“'r changes sign at
them; —t— (p+1)—1=m; —t—p — 2 points yﬁ)”,yﬁj%, ...,yﬁmfffl.

obtained by the replacement method based on

We have just seen that for I=p+1,p+2,...,m —1—1, Vl”H"T has no zero

interval in [x,+ 11, X,; —]. So to prove that 7™ has no zero interval in [x,,,b) it is

. 1 . . . .
sufficient to show that v/ has neither zero interval in [x,,, Xt ypp] norin [x; ., b).

1, . : 1 L

If v/ has a zero interval in X1, X 4], then o “ljiy.y- 7 1s in the WT-space

Vg_rjllf, with 1y <ip<if +p+1, so that dim V%ﬁjﬁr<]1’ —17—1; — 1. Now, we
I :

know that v/ has m; — 1 — p — 2 sign changes on (Xet a1 X7 —2) (=[x, X)),

and using that p<n—1—0(1;) we get my —t1—p—2>j7 —t—1; — 1, which is a

contradiction. On the other hand, note that from (a;) and because t<7*, if vf“’r is

T

: 0, p+l . .
proportional to v;" on [x,+,1,b), then v) has no zero interval in [x,-.,b)

(c[xll++ﬂ+17b)). Thus, we now show thatfor [ =p +1,p+2,...,m — 1 — 1, vf’“"f is

proportional to v?” on [x'T+P+1’b)' For this purpose, observe that for each / =
p+1,p+2,...,m —t—1, the m —t—p—2 points yl .y o ...,y | are

simple zeros of le+1,r|[ and also of V|, both in the space

- -1
x:T+p+1’xll ] x:1++p+l’xJ1 ]

Hence, applying Lemma 4.11(a) we easily deduce that

v, and V7,

le-HH—l

+1,
I

Wy T

. » «,- ] must be proportional. Then there is a linear

3 t?’+p+l‘ ,1++/,+1«,~ T

combination of ¥/ and ¥/", which is in 9" <.#)", vanishing identically on
i it at P+ o

[x,Tﬂ,H,xj;_T]. Now, it is easy to deduce from Proposition 4.31 that v} and v

are proportional on [xl]+ +p+1,D). Finally, according to (b;) we conclude that for

Il=p+1,p+2,....m —1—1, vf“’r is proportional to v?’f on [x,HpH,b). This

completes the proof of (b}).
The proofs of (b5)—(bs) are completely analogous to those of (aj)—(as) in

Theorem 4.30, respectively, proceeding now ““to the left”. This completes the proof
of (if). O

Lemma 4.39. For 0<t<t*, the (m; — t)-dimensional WT-space y(l)’r and the basis
{Vg*f7 VoY fulfill (by)~(bs) of Theorem 4.36 with p = 0.

my—1—
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Proof. By Corollary 4.34, the space y?’T and the basis {VS’T, . VOT .} fulfill the
properties (a;)—(as). Hence, to prove (b;) with p =0 it is sufﬁ01ent to show that for
[=0,1,....om —1—1, v?’r has no zero interval in [x, ,b). From Remark 4.35, v(l)’f
does not go to 0 to the right. Lemma 4.23(a) now implies that for / = 0,1, ...,m; —
-1, Uz “ has no zero interval in [x 5,»b). Thus, (by) is proved.

Whenever p = 0, note that the statements (bs), (b3) and (by4) coincide with (a5), (a3)
and (ay4), respectively. Therefore, Corollary 4.34 implies that (b,), (bs) and (bs) hold.

Finally, to prove (bs) with p =0, observe that for / =0,1,...,m; —t— 1, the
spline v?’r does not go to 0 to the right, since T<7*. Then (as) implies (bs) whenever
p=0 04

Let 7 be a fixed and arbitrary integer satisfying 0 <t<7t*. From (a,), vg’r has no
zero interval in (a, x,, ), whence Ug"T does not go to 0 to the left. We can therefore use
Theorem 4.36 to obtain the (m; — 7 — 1)-dimensional WT-subspace y]’f and the
basis {Vll"f7 VZI’T, I 1t whlch fulfill properties (b;)—(bs) of Theorem 4.36 with

my)—

p=11f l<n—1-0(1;) and v * (= ¥(V,")) does not go to 0 to the left, then
Theorem 4.36 again applies to obtaln the (m; — 7 — 2)-dimensional WT-subspace

7" and the basis {V3°, V3", ..., V,;"__,}, which fulfill (b;)-~(bs) of Theorem 4.36
with p = 2. Proceeding in this way, 1f we define

pr =1+ max {p )" (=¥ (V")) does not go to 0 to the left},

0<p<n—1l-a(n)
then we get the WT-subspaces
SIS P TS 35”’1’:’17
with basis

0, 0, 1, 0T o
{VOIW' v, Tr ]} {Vl I""’ ml T— 1} {Vfl))ﬁ Vp T— 1}

m mp—

respectively. Summarizing, we have the following result.

Corollary 4.40. For 0<t<t* and 0<p<p:, the set V" is an (m; —1— p)-

dimensional WT-subspace of ?0’1. Moreover, the subspace " and the basis
Ve Vi, Vi 1} fulfill properties (bi)~(bs) of Theorem 4.36 as well as

Proposition 4.37 and Lemma 4.38.

As with Corollary 4.34, we shall use Corollary 4.40 without an explicit reference
whenever we apply (b;)—(bs) of Theorem 4.36, Proposition 4.37 or Lemma 4.38 to
the spaces )", 0<t<7*; 0<p<pk.

Lemma 4.41. For 1 =0,1,...,7" — 1, the integer p:(=: p*) does not depend on t.
Moreover, for p=0,1, ..., p%, the splines V0" and vﬁ’o are proportional on (a, xJI—,TL
whence they have the same left level.
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Proof. Let ty be an arbitrary integer in [1,7* — 1]. From (a;), 5)™ and vy (= v)°) are
proportional on (a, X, ], whence they have the same left level. It also follows from
(a;) that both v)™ and v do not go to 0 to the left. So the spaces ¥|™ and "

exist, i.e., min {p; , g} = 1. For p>0 we consider the following inductive hypothesis:

{The spaces "™ and y’f’o exist, i.e., min{p; ,ps}=p; 12)
For p'=0,1,...,p — 1, vﬁj’m and UZ:’O are proportional on (a,x,- ].
We now prove the following claim.
Claim 1. The spline V#™ is in g0
For p' = 0,1, ...,p — 1, by construction it follows that ¥/® is in ] cy’f/”“ and

also that v/™ has a lower left level than UZ:’TO. So, taking into account the inductive
hypothesis, we see that v/ has also a lower left level than vﬁ:’o. Thus V)™ is in

R cy?’“’ Cy(]),o’ and vf™ has a lower left level than 1)5:’0 forp'=0,1,...,p — 1.

Hence,
yhe ey?’omy:’om myfl”o = y‘l’vo,

This proves the claim.

Note that the restrictions of both V'/'* and V5~0 to [X;+4,, X, =] have m; — 1o —
p — 1 simple zeros in this interval, and in addition these zeros are the same for both
restrictions. Then using Lemma 4.11(a) it is easy to see that V/'™ and V[’j’O are

proportional on [x,]++p,le—,fo], since both restrictions are in the space &, - .

Then there exists a linear combination of both splines, say V™ — AV{)"‘) with A#0,
which vanishes identically on [XIT 493 X;7 —1|- Moreover, it follows from Claim 1 that

0 . . ,
vt — 2 V[)”O e 97", Therefore, Proposition 4.37, with t =0 and i/ = 1 + p, shows
that v9™ — 200 is identically zero in the interval (4, x,- . Hence, v/™ and v/ are

proportional on (a, x ]. So we have two cases to consider. First, both vh and

Ji—T0
o'st0

vﬁo go to 0 to the left. Then p; = pj = p and for 0<p'<p; = pg, the spline v s

proportional to UZ:’O on (a,x, —]. Secondly, both vp™ and v;j*” do not go to 0 to the
left. In this case, we again obtain the conditions in (12), now with p + 1 in the place
of p, and therefore the same procedure can be applied. Thus, we finally conclude that
Py, = py = p +1 for some [ satisfying p<p+I/<n—1-0(11), and that for p’ =

0,1, ...,p;, = pg, the splines vﬁ:’r“ and vp:’o are proportional on (a,lef_fo], whence
they have the same left level. This proves the lemma since 7 is an arbitrary integer in

1,0 —1]. O
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Remark 4.42. Let  be an integer satisfying 0<t<t". It is clear that v/* does not go
P
* p*
(=¥(V}.")) goes to 0 to the left. Indeed, the assertion follows immediately from the
definition of p* (= p) provided p*<n — 1 — ¢(11). Then assume p* =n—1—o(11).
Using Theorem 4.19 we deduce that W(G) goes to 0 to the left for all Ge ¥

1y ”

Hence, f/’;h N =9, Furthermore, dim(f/’jvj1 NnF)=m —(n—1-0(1y)) =

to 0 to the left whenever p<p*. On the contrary, we now assert that v

m; — p* = dim Yf*’o, whence V’f*’o = y,f\,] NS whenever p*=n—1-a(1).
Thus, v’p]:’o goes to 0 to the left. Lemma 4.41 now completes the assertion for vﬁ:’f,
0<t<7*. Finally, using (a) in Lemma 4.38 we conclude that for /=p,p+

1,...,my — 1 — 1, the spline /" goes to 0 to the left if and only if p = p*.

From (b)), for 0<p<p* the functions vﬁ-f**l and vg’TLl are proportional on

[x,l+ +p»b), and therefore they have the same right level. Then using Remark 4.35 we
deduce that vﬁ*f**l does not go to 0 to the right. This allows us to define the sets
yf”: subspaces of y’l”f_l, as follows. For 1<p<p*, let

I = {Ges" . W(G) has a lower right level than G

(Observe that V?’T* was already defined.)
Theorem 4.43. For 0<p<p* and 0<t<7*, 90" = S0 70"

Proof. If p = 0, then it is obvious that )" = #1° A9V since )" < 7 (= ).
Thus, assume p>0.

We first prove that #%° = 90" A 7" for 0< p<p*, 0<t<7*. To do this, consider
a spline Ge 77", Then Ge """ and g = ¥(G) has a lower left level than "

p—1
p—1,0

Hence, Lemma 4.41 implies that g has a lower left level than v o1 and therefore g

has a lower left level than UZ:'O for p =0,1,....,p—1. So
GeSNANS A At = g0

On the other hand, by construction, &%° = 9", Thus, Ge 97’ ~.#)". Let us now
show that 927 = 97° A 7% for 0<p<p*. Let Ge ¥ . Then Ge ™ ' and ¢
has a lower right level than v ~'. Therefore, from (b)) applied to V2 ~! we deduce

that g has a lower right level than v)™ !, and by (a) in Lemma 4.32 it also has a lower
right level than ug’f*fl. Furthermore, applying the previous case we get

Ge SV Thus, Ge S0 A S0
We now prove that S4°nFT =" for 0<p<p* and O0<t<t". Let
Geyf’omy?’f. Then, for p' =0,1,...,p — 1, the spline G is in y‘i’/’o and ¢ has a

lower left level than in"O. Hence, Lemma 4.41 implies that g has a lower left level than
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vﬁ:’f. So GeS)" and g has a lower left level that vﬁj‘f for p=0,1,....,p— 1.
Therefore,

GeS N nI A ST =P

Finally, we see that 9"~ )" =% for 0<p<p*. To this end, consider a
Ge AV Then Ge 900 A g% 1 = 07! \where the equality holds because

we have just proved it. Moreover, g has a lower right level than vg‘”*_]. From (b)),

0,0 —1 1
14

and g has a lower right level than vﬁf’l. Thus, Ge 44 " This completes the proof of
the theorem. [

007! and therefore vj™ ' as well, has the same right level as v/ ~!. So Ge ¥

Corollary 4.44. The spline ¥Y(G) goes to 0 to the right for every G in
ST 0<p<p*. The spline W (Gy) goes to 0 to the left for every G, in
ST 0<t<t*. Hence, any G in & " goes to 0.

Proof. If G, is in yf‘f*, 0<p<p*, then Gy ey?’f‘. On the other hand, we know that
vg’f* goes to 0 to the right. Then using (a) in Lemma 4.32 we deduce that W(G)) goes
to 0 to the right for every Gj in Y’l”f CY?’T*. The proof that ¥(G,) goes to 0 to the

left for every G, in ,Vﬁf’r, 0<t<", is similar, and so we omit it. The last sentence of
the corollary is now obvious. [

Theorem 4.45. For 0< p < p*, the set ,5”’1”* is an (my — " — p)-dimensional WT-space.

Proof. In the case p = 0 the result follows from Corollary 4.34. Thus, assume p > 0.

From (b;) with t=1"—1, for [ =p,p+1,...,m — %, the spline vf‘f*_l is

-1

: 0,7" p,T -1 0,7°—1 :
proportional to v, on [xl]++p,b). Hence, v and v, have the same right

level. Furthermore, from (a) in Lemma 4.32, v?’ftl has the same right level as 08’1*71.

Then v} 71 does not go to 0 to the right because the same fact is valid for vg’r*fl.

Accordingly, the splines vﬁ"**l,vgfl_l, e v,’,';f:f have the same right level, and they

do not go to 0 to the right. So we can use a similar procedure to that in the proof of
(a}) in Theorem 4.30. Indeed, as o™ ~! does not go to 0 to the right, Theorem 4.26

shows that there exists lim,1j (g(x)/v0" " '(x)), x¢Q, for all ge'¥(¥1). Then it is

clear that ¥ is a linear subspace of " ~'. Let

=1
0 iy )

~ I=p+1,p+2,...,m — 1"
x1b Uzyf 71()6) P P 1

. - -1 - ol
As v0T P vy have the same right level, 0<|6)"

p yYp+1 0 Y=t |<OO Hence,

1 *_ . . _ ..
v’ —0rF vt " has a lower right level than vt !, Moreover, it is easy to see
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that {P7" 1 — oy ! ng’l};":‘p_jl is linearly independent. Then %0 is precisely
the (m; — t* — p)-dimensional space spanned by this basis.

We now show that V’l"f* is a WT-space for 1<p<p*. Let GeV‘f"T*. Then G has at
most m; — t* — p sign changes because 5”’1”7* is a subspace of the (m; —t* — p + 1)-
dimensional WT-space 5”’1”7*_1. Suppose first p<p*. By Remark 4.42, vg”*“ does
not go to 0 to the left. So by (bs) the spline vg”*‘l satisfies the assumptions on v in
Lemma 4.24. On the other hand, it follows from Corollary 4.44 that g .= ¥(G) goes
to 0 to the right. If G has m; — t* — p sign changes, then Lemma 4.24(d) implies that
there exists a x large enough for which g — svgvf*‘l has at least m, — " — p + 1 sign
changes on (x,,x, ) for all ¢ sufficiently small and with a suitable sign. This
contradicts (by) applied to G — ng’f*‘l, in =1 Therefore, we deduce that G has
at most m; —t* — p — 1 sign changes. Thus, y’l”* is weak Chebyshev when p <p*.
We finally prove that y’f*’f is weak Chebyshev. Assume to the contrary that
Geyfw has m; — t* — p* sign changes. For ¢ #0, let G, = G—slV/’,’:"T*_] and
g1 =Y¥(G1). As g goes to 0 and m; — t* — p* >0 (so G#0), there exists i>1] such
that [x;,b) is a maximal zero interval of g. By Proposition 4.37, i>i] + p*.

Furthermore, by (by), ). ~" is proportional to vy '

-1

on [x,+,,-,b), and therefore all

the zeros of uﬁf

fact, together with the assumption that G has mj; — t* — p* sign changes, in the

in [x,l+ +p+» b) are isolated and of multiplicity 1. We shall use this

following reasoning. Since g goes to 0 and ij‘Ttl goes to 0 to the left, it follows that
g1 goes to 0 to the left, and for an ¢; sufficiently small and with a suitable sign, g; has
either at least m; — t* — p* + 1 sign changes on (x,,, x, ) or at least m; — t* — p* sign
changes on (x,,,x, ) and a simple zero in (x, ,b)\Q, depending on whether [x;, b) is a
maximal zero interval of g with i<y, or i>j,, respectively. Note that the first
alternative is not possible, since Gj is in the (m; —t* — p* + 1)-dimensional WT-

-

space "1 As vh ! satisfies the assumptions on v in Lemma 4.24, apply now
(c) in this lemma to conclude that there exists a x large enough for which ¢g; —
sv;’::i‘f*_l has at least m,, — t* — p* + 2 sign changes on (x,, x, ) for all ¢ sufficiently
small and with a suitable sign. This contradicts (b,) applied to G| — sVl’f::f ’Tx_l, in

G Thus, 9% is weak Chebyshev. [

Theorem 4.46. Let Ge & with the property that g = Y(G) has the same right level as
Ug’r/ for some 0<7' <t* and the same left level as Uz:,o for some 0<p' <p*. If
H is in ", being py=p' and t©o=7, and g is in Ly, then also h =V (H) is
in $¢.

Proof. As He "™, it follows from Theorem 4.43 that Hey’f“’o ) V?”O. Note that
0 < 0 and 9 < 9% since py>p’ and 1o >7. Then taking into account that



A. Damas, M. Marano | Journal of Approximation Theory 126 (2004) 60113 99
¢ has the same right level as vg"f/ and the same left level as vﬁ:’o, and using (a) in
Lemmas 4.32 and 4.38, we see that g does not have a lower right or left level than 4.
Hence, it is easy to show that |h\<i\g\ on J\K, for some constant A and some
compact interval Ko< J. Therefore, [, ¢(|h])< [}, #(2lg]), since ¢ is increasing.

As ge Z4, and £ is a linear space, fj (Alg]) < co. On the other hand, it is clear
that [ ¢(|h])<oo. Thus, [, ¢(|/4]) < oo, which proves the theorem. [

Lemma 4.47. If he n\{0} satisfies h(z) =0 for all zeQ, then h has at most one
maximal zero interval. Hence, there exists no Heéﬂ’l’*"f*\{ﬂ}for which QA (x,,,x,,) is
an alternating set, whence

mp =t —p"—=1<Qq .

Proof. Assume that there exists an he.%\{0} satisfying A(z) = 0 for all zeQ, and
with at least two maximal zero intervals. Then there exist indexes iy, jo€Z, iy <jo,

such that the restriction of / to [x;,, x;,] is in y%io without zero intervals. Thus,
Qi o) < Zijo) () o — io — 1,

where the last inequality is due to Lemma 4.11(c). This contradicts that {u, Q} is a
reference pair (Definition 4.18), which proves the first sentence of the lemma.
To prove the second statement in the lemma, suppose that there exists

He " " \{0} such that Qn(x,,x, ) is an alternating set for H. Then /=¥ (H)
has at least two maximal zero intervals, since /& goes to 0 (Corollary 4.44). Moreover,
as QN (x,,,x,, ) is an alternating set for H, using Theorem 4.19 we see that /(z) = 0
for all zeQ. This contradicts the stated above. In particular, this is the case if
m —1t"—p"—1=Q . Indeed, after applying [SSS] if my — " — p* = 1>Q, , ),

(’1¢J1)

we can use [JKZ] in an (Q, , ) + 1)-dimensional WT-subspace of ./} % to obtain an

111]1)
Hoe " " \{0} for which Qn(x,,x,) is an alternating set. [

Now we shall deal with the spline u itself. Let U be the restriction of u to [x,, x, ].
By (3), Ue ¥, and from (3) and Theorem 4.19, u = W(U).

Lemma 4.48. There exist imegers (u) and p(u), 0<t(u)<t*, 0<p(u)<p*, such that

(u) p(u),0

u has the same right level as UO , and the same left level as vp( ) . Moreover,

Qu,,y<myp —t(u) — p(u) — 1.

1,J

Proof. As {u,Q} is a reference pair, u does not go to 0 to the right, and therefore we
see that there exists t(u) € Z satisfying 0 <t(u) <t*, and such that u has the same right
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0,7(u)

level as v,"". Likewise, as u does not go to 0 to the left, there exists p(u)eZ,

satisfying 0< p(u) <p*, and such that u has the same left level as vzgzg’o.

By (2), n< —n<n<j,. So it is easy to see that there exists a unique spline
Ges |
Then the following facts can be easily proved:

such that Gy =1 on [x,, 1,1, X, ny1]. Furthermore, G; >0 on (x,,x, ).

(1) For all ¢ sufficiently small, the r simple zeros of U in (x,,, x, ) produce r simple
zeros of Uy = U —¢Gy in (x,, x,,).

(i1) For all ¢ sufficiently small and with a suitable sign, the ¢ double zeros of U in
(x,,x,,) produce at least ¢ simple zeros of U, in (x,,x, ).

Moreover, taking ¢ sufficiently small, all the simple zeros of U, obtained in (i) and
(i1) are different. Thus, we can choose an ¢#0, small enough and with a suitable sign,
so that U, has at least Z,, , )(U) sign changes on (x,, x, ). Then the number of sign

changes of U, is not smaller than Qg ), since by definition of
Q, Z,,)(U)=Q On the other hand, u, = ‘I’( .) has the same level as u

because u; = u on J\(x,,,x, ). Hence, u, has the same right level as vg " and the

same left level as /" )0 Then we deduce that U, is in &7"0~ g0 = gplr)

p(u)
where the equality is due to Theorem 4.43. In this way, as V’I’O’)'T(") is an

(my — p(u) — t(u))-dimensional WT-space (Corollary 4.40), and the number of sign
changes of U, is not smaller than Q, , ), we conclude that

Qu,,ysmi —t(u) — p(u) — 1. O

(t1,01)"

l]n][)

According to Lemmas 4.47 and 4.48,

mp =t —p"=1<Q ,y<m —t(u) — pu) — 1.

From now on, we shall denote by p, and 7y any pair of integers satisfying

{Mwéméﬁ and  7(u) <70 <T;

13
ml_TO_pO_l:Q(llle ( )

Note that py + 19 <p* + 77, since Q, ,y>m; — 1" — p* — 1.
Lemma 4.49. Let p, and ty be integers satisfying the conditions in (13). To prove
Theorem 4.12 whenever {u,Q} is a reference pair, it is sufficient to show that there

exists an Hye &'""\{0} such that Q is an alternating set for V(Hy).

Proof. Recall that Q = {zeJ: z is a simple zero of u*}, where u* is a continuous
function satisfying |u*| = |u|. Assume that Q is an alternating set for sy = VY(Hp),
where Hye "™\{0}. Then it is clear that either /iy or —hy satisfies (a) and (b) of
Theorem 4.12. Let U be the restriction of u to [x,,x, ]. As py=>p(u) and 70>7(u),
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applying Theorem 4.46, with U in place of G and Hj in place of H, we see that (c) of
Theorem 4.12 also holds. [

By (13), mi —t9 —py— 1 =9, ,,)- Then we can use Property [JKZ] in the
(my — 19 — py)-dimensional WT-space ¥ to obtain an He9*"\{0} for which
Qn(x,,x,,) is an alternating set. So, in view of Lemma 4.49, the problem is now to
prove that Q is an alternating set for W(H ). This will be immediately achieved when
H has no zero interval.

Lemma 4.50. Let p, and tq be integers satisfying the conditions in (13). If Q0 (x,;, x,, )

is an alternating set for Hy, in ,V‘f‘]’f“ and without zero interval, then Q is an alternating
setfor hy = \P(Hg)

Proof. Let Qn (x,,, le) be an alternating set for H, eV’f"'“’, and assume that H, has
no zero interval. By (13), m; — 19— py — 1 =€, , ). Therefore, Hy has m; — 19 —
po — 1 sign changes. Suppose that /1y does not go to 0 to the right nor to the left.
Then, in particular, 7o <t*, and so (by) applied to H 6,7’1’0’70 implies that 4y has no
double zero, and

{/’l() = 0}ﬂ (J\(X,I,XJI)) = Qm(‘]\(xlwx.ll))'

Thus, Q is an alternating set for %, and therefore the lemma holds in this case.

Assume now that /g goes to 0 to the right. Then /4 has a maximal zero interval,
say [x;,b). By hypothesis, j> j,. From Lemma 4.47, hy does not go to 0 to the left,
and by Corollary 4.44, py<p*. Let 1; = max{0,t9 — 1}. Then V§*" is in 7" and
so it satisfies the hypothesis on V' in Lemma 4.24. If /i has a double zero in (a, x;), or
a simple zero in (@, x;)\Q (note that /i cannot have simple zeros in (x,, x, )\Q), then
applying Lemma 4.24 we deduce that there exists a x sufficiently large for which
hy — 8080’” has at least m,. — 79 — p, + 1 sign changes on (x,, x, ) for all ¢ sufficiently
small and with a suitable sign. This contradicts (b,) applied to Hy — V"™, in #]*"".
An analogous argument proceeds when /iy goes to 0 only to the left. So we conclude
that in every case Q is an alternating set for sy. [

Remark 4.51. Let p, and t( be integers satisfying the conditions in (13). Then
applying Property [JKZ] in the (m; — 19— py)-dimensional WT-space S we
obtain a spline He.*™\{0} for which QN (x,,x, ) is an alternating set. If H has
no zero interval, then it follows from Lemmas 4.49 and 4.50, with H, .= H, that
Theorem 4.12 is true when {u,Q} is a reference pair. Therefore, to complete the
proof of Theorem 4.12 whenever {u, Q} is a reference pair, it remains to consider the
case in which the spline H has a zero interval. Note that in this situation it is not
possible to assure that Q is an alternating set for ¥(H). So, in order to apply Lemma
4.49 in this case, we shall need further results. The existence of H allows us to
observe that there exists an He.{"*\{0} for which Qn (x,,x, ) is an alternating
set, and such that either A coincides with H on [x/,,x, |, and [x,,x,,] is a maximal
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zero interval of H, 1 </¢ <7, or H coincides with H on [x,,x/,], and [x/,,x, ] is a
maximal zero interval of H, 1} </, <j,. Without loss of generality, we shall treat the
first case. The other is completely symmetrical on its conditions, and therefore on its
treatment as well.

Definition 4.52. For each /e Zn (11, ,), and for every 1 =0, 1, ..., 7", we define

Tt ={GeS" : [x,,x/] is a zero interval of G}.

It is clear that 7 is a linear subspace of V’]’*’T. We now claim that if j7 — 7/ —
7<0, then .7; = {0}. Indeed, this follows immediately if t =0 and / = ;. If >0
then I, < y?’r c y?’rfl, and (c) in Lemma 4.32 applied to y?‘kl shows that every G
in y?"*l\{o} vanishing on [x,, X, ] is such that W(G) has the same right level as
)", Hence, G cannot be in 5.7, which proves the claim. In Theorem 4.55,
we shall prove that 77 is a (j; — / — t)-dimensional WT-space whenever j; —/ —
7>0.

Remark 4.53. Take points 1 <jr<---<Jm-1 in (x,,x, ) in such a way that
P1 P25 e Puct—o(y) are in (X, xy41), and Jr is in (Xt 41, Xnyri12), K=n—
o(11),...,m —1. Fort=0,1,...,7* — 1, consider the set {yk};j’;;f“ in (x,,x,- ).
Using Property [JKZ] in the (m; — 1)-dimensional WT-space y?’f we obtain
07 e #\{0} for which {7 };",* " is an alternating set. If Q° has a zero interval in
[x,“le—,f], then the location of the points yy, 72, ..., Jm,—c—1 implies that [x,,,le—,f]
has to be a zero interval of Q7 but this is not possible because of Proposition 4.31.
Then for t=0,1,...,7* — 1, OF has no zero interval in [x,,x, ], whence it has
my —© — 1 sign changes on (x,,x, ). Then from (b) in Lemma 4.32 applied to
Q- e&’?’r, ¢" has the same right level as vg’r, and therefore ¢* does not go to 0 to the
right. Analogously, from (b) in Lemma 4.38 applied to Q° ey?’f, ¢" has the same left
level as vg”, and therefore ¢* does not go to 0 to the left. As a consequence of all these
results, from Proposition 4.31 and Lemma 4.23 it is easy to see that ¢* has no zero
interval. Furthermore, (a4) of Theorem 4.30 applied to Q‘ey?’f implies that ¢* has
no double zero and

{¢" =0} (N\(xiy5 %)) = Qo (N\(x415x,,))-

Thus, ¢* has m, — © — 1 simple zeros in (x,,, x, ) for every ke N. We now assert that
all the zeros of ¢° have multiplicity one. In the case T = 0, the assertion follows from
Lemma 3.21 applied to Q°. Assuming that the assertion holds for t — 1, being 1> 1,
we will prove it for 7. Note that by construction, the zeros of QF are also zeros of
0% !, and moreover, the zeros of ¢° are zeros of ¢°~', since

{g" =0} (N\(xy,x,) = {g7" = 0} (N\(xi,x,,)) = Qo (N\(x, X,)-
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Thus, if ¢* has a zero of odd multiplicity greater than 2 at a point z, then it is easy to
see that for all ¢ sufficiently small and with a suitable sign, ¢° — e¢"~!' has at least
three simple zeros, say z;(¢) = z, z2(¢) and z3(e), with zx(¢) Tz and z3(¢) | z as e—>0.
Let keZ such that ze(x,,x, ). Then ¢° —eg"' would have at least m, — 1+ 1
simple zeros in (x,,x, ) for all ¢ sufficiently small and with a suitable sign, which
contradicts (a;) applied to QF — Q™! in y(l)’f_l. Thus, the assertion is proved.
Summarizing, for t=0,1,...,7" — 1, we have proved that there exists a QTEY?’I
such that the following properties hold:

® O has m; —t — 1 sign changes on (x,,x,. )

® 4° has the same right level as vg’f

® all the zeros of ¢ are isolated and of multiplicity 1, and

{qf = 0}(’\ (J\(xn’le)) = Qm(‘]\<xll’le))‘

Lemma 4.54. Assume that Gy is in I ,\{0} with j7 —/ —1t—1 sign changes,
n</<yy, 0<t<t* — 1. Then the following properties hold.

(a) 9o = ¥(Go) has neither double zeros nor zero intervals in (x;,b), and

{90 =0}n[x, ,b) = QnIx, ,b).

(b) go has the same right level as vg’f.

Proof. Let Gy be as in the statement of the lemma. Observe that j; — ¢ — 7>0, since
Goe 7 \{0}. Note also that [x,,, x/] is a zero interval of Gy. Suppose that [x, ,x;] is a
zero interval of Gy, /<j</ + 1. By construction, Q" hasn — 1 —o(1)) +j—1;, — 1 =
J— 1] +n—2 sign changes on (x,,x;). Then since Gy has ;7 —/ —17—1 sign
changes and [x,,x;] is a zero interval of Gy, the spline Gy — Q" has at least (j —
W+n—=2)+(;—(—1—1)+1=m —1—14j—/ sign changes for all ¢
sufficiently small and with a suitable sign. Then we deduce that j = / necessarily.
Otherwise (a,) applied to Gy — eQ° ey?’f is contradicted. Thus, [x,,, x/] is a maximal
zero interval of Gy.

Now, with similar proofs to those of Claims 2 and 3 in Lemma 4.32(c), we below
deduce Claims 1 and 2, respectively. We only remark that vg’f, used in Lemma 4.32,
must be here replaced by ¢°.

Claim 1. For all ¢ sufficiently small, gy — eq* has no double zero, and

{go - gqr = O}m(']\(xnale)) = Qn(-]\(xlmx‘/]))
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Claim 2. The spline g has no zero interval in [x;,b).

Taking into account Claim 2, to prove (a) it remains to show that gy has no double
zero in (x/,b), and that gy has no simple zero in [x, ,5)\Q. Assume first that gy has a
double zero in (x/,x, ). Then it is easy to see that we can choose ¢#0, small enough
and with a suitable sign, so that gy — &¢* has

(=1 +n=2)+(;—t1—/(—-1)+2=m —1

sign changes on (x,,x, ). This is a contradiction, because Gy —¢eQ" is in the
(m; — 7)-dimensional WT-space Vl' . Thus, go has no double zero in (x/,x,,).
Suppose now that gy has a double zero in [x, ,b). Then it is not difficult to see that
for all é£0, small enough and with a suitable sign, gy — &¢" has at least a simple zero

n (x,,b)\Q. This contradicts Claim 1. In consequence, go has no double zero in
(x/, b). Finally, if g has a simple zero in [x, ,5)\Q, then gy — &g has a simple zero in
[x,,b)\Q for all & sufficiently small, and Claim 1 is again contradicted. This

completes the proof of (a).
We now prove (b). We have shown that g, ¢* (sece Remark 4.53), and gy — &¢* for
all ¢ sufficiently small, have no double zero and

{¢° =0} nlx,,,0) ={g0 —eq" = 0} [x,,, D)
={go =0}n[x,.b) =Qnlx, ,b).
Accordingly, Lemma 4.28(a) shows that gy does not have a lower right level than ¢°.
Then we deduce that go does not have a lower right level than ”0 , because ¢* has the

same right level as Uo " (Remark 4.53). Finally, using (a) in Lemma 4.32, we conclude
that g¢ has the same right level as vg’r. O

Theorem 4.55. For every 1 =0,1,...,7%, the set 7, is a (j7 — ¢ — t)-dimensional
WT-space whenever j7 — ¢ —1>0.

Proof. The proof is by induction on 7. Observe first that the space 7 2 can be
identified with & o and therefore 779 is indeed a ( J7 — ¢)-dimensional WT-space
whenever j; — />0. Thus, assume 0<t<min{t*, j; —/ — 1} and suppose that .77
isa (y; — ¢ — 1)-dimensional WT-space.

In Remark 4.53 we took points §; <js <+ <Jy,— in (x,l,le—) in such a way that
J1,725 -+ Pu-1-6(;y) are in the component (x,,x, 1), and y; is in the component
(3 n+,++1,xk "+1T+2)’ k=n—0a(11),...,m — 1. So for each 1 = 1,2, ..., 7%, the set
{Fktm—(,-—s—1) is contained in (x/41,x,; ). For k=m — (37 =/ = 1), ...,my —
T— 1, we now consider points j, so that y, # J and 7, is in the same component in
which i is. Now, for I =my — (j;7 =), ...,mi — 1t — 1, let p} = if k#/, and
7 = y). Using Property [JKZ] in the WT-space 7 we obtain W} in 7;\{0} for

which {7 }7, " 1 Ji—¢—1) is an alternating set. We assert that W} has no zero interval
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in [x/,x, —]. Assume to the contrary that for some /', W} has a zero interval in
[X¢,x,-—]. Then the location of the points 74 implies that [x,, x J;—<) is a zero interval
of Wy, and therefore W} vanishes identically on [x,,,x,-—.]. As Wj is in F}cy(l)ﬂ

Proposition 4.31 applied to Wf,ey?’f shows that Wj vanishes identically on
[x.,,x,,], which is a contradiction. This proves the assertion. Then for every /, Wf

changes sign at each y,, k =my — (j;7 —¢ — 1), ...,m; —t — 1. As the restriction of
Wi to [x/,x,- ] isin VZH?T, it follows from Lemma 4.11(b) that the yj; —7—/ — 1
points in {yk}Z“mT1 ! (jr—r-1) aTe the only zeros (of multiplicity 1) of W} in (xz,x,- .

Therefore, the replacement method employed in the construction of { W[}';ﬂ,;f:(ljl /)

mlrl

I (7 ~) is a basis

insures that this set is linearly independent in .7, and thus { W/}
for the (j7 — ¢ — 1)-dimensional WT-space rf. For I=my —(y7 = /), ....,m —

7 — 1, applying now Lemma 4.54(b) to W7}, in .7 ;\{0} and with j]_ —/ —1—1sign
changes, we see that w} = ¥(W}) has the same right level as v)". Then w? does not
go to 0 to the right, since T<t*. Accordingly, there exists

. wi(x _
07 = lim LU 1CO R (T =)y ey — 1 =2,
T
X1 wy o (x)
x¢Q
and 0<|0j| < oo. Hence, each W} — 0; W7 | isin 75" Moreover, it is easily seen

that
(W] = O Y

I=m;— (.l] =)

is linearly independent. Consequently, 75" is precisely the (j;7 —¢—1t—1)-
dimensional space spanned by this basis. We now prove that 7 }“ is weak
Chebyshev. To do this, let GeJ ”‘T“ c 7. By the inductive hypothesis, 7 is a
(y7 — ¢ — 7)-dimensional WT-space. Then G has at most j;7 —/—1—1 sign
changes. On the other hand, W(G) has a lower right level than vg’r. Then from

Lemma 4.54(b), G has at most ;7 —/ — 1 —2 sign changes. So 3*;“ is weak
Chebyshev. [

Lemma 4.56. Assume that G is in F, without zero intervals in [x;,x, ], 1 </<j,
0<t<t* — 1. Then

Z(/AJI)(G)SJT —(—7-1.

Proof. Let G be as in the statement of the lemma, and consider the spline
0" 7 \{0} introduced in Remark 4.53. As all the zeros of O have multiplicity one
and Q° has / — 1] +n — 2 simple zeros in (x,, x,), the following facts can be easily
checked:

(i) For all ¢, the spline G — ¢Q" has / — 1 + n — 2 simple zeros in (x,, x,).
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(ii) For all ¢ sufficiently small and with a suitable sign, G — ¢Q° has a simple zero
z(e) e (xz, xs41), being z(e) | x, as e—0.

(iii)) For all ¢ sufficiently small, each simple zero of G produces a simple zero of
G —eQ".

(iv) The ¢ double zeros of G produce either ¢ simple zeros of G —¢Q" for all ¢
sufficiently small or at least ¢ + 1 simple zeros of G — ¢Q" for all ¢ sufficiently
small and with a suitable sign.

Moreover, it is clear that for ¢ sufficiently small, all the zeros of G — ¢Q" obtained
in ()—(iv) are different. Accordingly, it is easy to check that we can take ¢#0, small
enough and with a suitable sign, so that G — ¢Q" has at least

/=1 +n—2+1 +Z(,)(G)
simple zeros. Hence,

/—1T+n—l+Z(,_Jl)(G)<m1 —17—1,

since G — ¢Q" is in the (m; — t)-dimensional WT-space 9?’1. Thus,

Z(/A’Jl)(G)gml7‘6717([*1?4’1’!*1):_1177/7’[71. O

4.3. Proof that the spaces Sn1 and Sy <Ly satisfy Property A
We are finally in a position to prove Theorem 4.12.

Proof of Theorem 4.12. Recall that the case n = 2 was proved in Theorem 4.20. So
we suppose > 3. From Lemmas 4.13 and 4.14, the proof of Theorem 4.12 is reduced
to the case in which I' = Z and u has at most one maximal zero interval.

Assume first that u has no zero interval, and let Q be the set of simple zeros of u*.
Lemma 4.15 shows that if there exist indexes i,je€Z such that Q,<j—i—n+1,
then Theorem 4.12 holds. Hence, we suppose €(; >/ — i — n + 1 for each i <. Thus,
we are assuming that {u, Q} is a reference pair.

Claim 1. Theorem 4.12 holds when {u,Q} is a reference pair.

From Lemma 4.49 it follows that in order to prove Theorem 4.12 in this case, it is
sufficient to demonstrate that there exists an Hype %[*™\{0} such that Q is an
alternating set for W(H), where p, and 7, satisfy the conditions in (13). We now
prove the existence of such a spline Hye.#"*\{0}. Taking into account (13), we
apply Property [JKZ] in the (m; — 19 — p,)-dimensional WT-space 7™ to obtain
an He&"™\{0} for which QN (x,,x, ) is an alternating set. There are two cases to
consider:

First Case. The spline H has no zero interval. In this case take Hy .= H. Then from
Lemma 4.50, Q is an alternating set for W(Hy). Thus, Claim 1 is proved in this case.
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Second Case. The spline H has a zero interval. In this case, according to Remark
4.51, we consider an He #{*™\{0} for which Qn (x,,, x,,) is an alternating set, and
such that A coincides with H on [x/,,x, |, and [x,,x,,] is a maximal zero interval of
H,11</y<yy. Then His actually in 7 \{0} = #{"™. Moreover, using Lemma 4.47
we deduce that (a,x,,] is the only maximal zero interval of / = W(H), whence
To<T*.

Assume that H has j; — /o — 79 — | sign changes. Then applying Lemma 4.54(a)
to He 7 \{0} we see that h has neither double zeros nor zero intervals in (x,,b),
and {h=0}nlx, ,b) =Qnlx, ,b). So, taking into account that QN (x,,x, ) is an
alternating set for H, we conclude that Q is an alternating set for /. Then in this
situation take Hy = H, and Claim 1 is proved.

Assume now that H does not have j; — /) — 19— 1 sign changes. Under this
condition, we will show the existence of an Hye.7 \{0} To<To<t*, with j7 —
Zo — 1y — 1 sign changes In this manner, we will be able to apply again Lemma 4.54,
this time to Hye I Vp ©™ to complete the proof of the claim. Note that H has
Q,.y,) sign changes on (x;o,le), since A has no zero interval in [x,,, x, ]. Then, as
3‘;‘] isa (j; — /o — 19)-dimensional WT-space, we are assuming that

Q(/O7‘II)<J1_ —/0 —T0 — 1.

We now prove that j — 7o — " — 1<Q, ). Suppose to the contrary that (0<)
Qtoy)<Jy — o — " — 1. Therefore, after applying [SSS] if Q, , )<y — /o — 7" —
1, we use Property [JKZ] in an (Q,,, )+ 1)-dimensional WT-subspace of 7~ }0 to

obtain a nontrivial spline in 75, =.9 " for which Qn (x,,,x,,) is an alternating set.
This contradicts Lemma 4.47. Therefore, j — /o — 1" — 1<Q, ), and so we get
Ji — 4o =7 —1<Q, )<y — %o — 10— 1. Hence, there exists an integer 7, such
that

Q(/mjl) = J17 —lo— T:) -1,

with 79 <t <t*. Then we can use Property [JKZ] in the (;; — /o — 1;)-dimensional

WT-space 7, ° ' to obtain an Hye 7 J\{0} for which Qn(x,,,x, ) is an alternating
set.

Assertion. The spline Hy has no zero interval in [xs,, X, |.

Assume, contrary to our assertion, that Hy has a zero interval in [x,,,x 11]' By
Lemma 4.47, Hy cannot have two maximal zero intervals, since QN (x,,,x, ) is an
alternating set for H,. Hence, we are assuming that there exists an integer ¢
satisfying /o + 1</1<j7 — 1 and such that Hy is in 7 ;{: without zero interval in
[x/,,x,,]. Consider again the spline A, in 77°. As H has no zero intervals in [x,,, x, ],
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the restriction of A to [x,,x,,] is in #;, , and has no zero interval. Then

Qo1 <ZypyryH)<O = Lo — 1,
where the last inequality is due to Lemma 4.11(b). Therefore,

Q1) = Qo) = Qo]

=5 —lo—t0— 1= (i —lo—1)=y] — (1 — 1.

As QN (xy,,x, ) is an alternating set for Hy, and H has no zero interval in (x/,, X, ),
we conclude that Hy, in I ;%, has at least y; — /1 — 7;, sign changes. This contradicts
Theorem 4.55 applied to I ;{: So the assertion is proved.

Taking into account that QN (x,,x, ) is an alternating set for Hoeﬂ*;%, that H,
has no zero interval in [x/,, x, | and that Q, , ) = j; — %o — 715 — 1, we deduce that
Hy has j, —/y—1,—1 sign changes. Then from Lemma 4.54(a) applied to

Hoeﬁ‘;%\{O} we conclude that hy = W (Hy) has neither double zeros nor zero
intervals in [x/,,b), and

{h() = O}f\ [X/O,b) =Qn [)C/O,b).
Accordingly, under the present assumption on H we have also proved that there

exists a nontrivial spline Hy in 7 ;‘Z’J <" such that Q is an alternating set for
ho (=¥ (Hy)). This completes the proof of Claim 1.

Observe that it only remains to prove the theorem for the case in which I' = Z and
u has exactly one maximal zero interval. Thus, the following claim completes the
proof of Theorem 4.12.

Claim 2. Theorem 4.12 holds when I = Z and u has exactly one maximal zero interval.

It is obvious that by arguments of symmetry we can assume that the maximal zero
interval of u is not of the form [x;, b) for any je Z. Under this assumption, [x;, x;41] is
a maximal zero interval of ul[,, , for some i€ Z. We will next find an /o that makes
Theorem 4.12 to hold and that it vanishes on (a, x;;{] independently of the form of u
on (a,x;). Therefore, we can suppose without loss of generality that (a,x,] is a
maximal zero interval of u.

For ie — N take one point z; in each (x;_1, x;). It is easily seen that there exists a
up € S without zero intervals, and without double zeros in (@, x_], and such that
up = u on [xg,b) and up(z;) =0, all ie — N. It is easy to check that z_;,z_,, ... are
the only zeros of ug in (a,xo). In particular, o(1;) = 0 and 1f = 1;. Set uj; = u* on
[x0,b), and on (a, xo) take ug = ug, or uj; = —uy, where the sign is chosen so that xy
becomes a simple zero of u§. Let Q = {zeJ: z is a simple zero of uj}. We assume

Card(Qn(x;,x;))=j—i—n+1 for all 0<i<j,

since otherwise we would use Property A in V?J to obtain a straightforward proof of
Theorem 4.12. Under these conditions, {up, Q} becomes a reference pair, and
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therefore we will next apply Claim 1 to that reference pair. As 1y = u on [xy,b) and u
does not go to 0 to the right, it follows that both u and uy have the same right level as

vg’m’“) for some integer t(uy) satisfying 0<t(uy) <7*. Let Uy and U be the restrictions

of ug and u to [x,,, x, ], respectively. Then U e N (0} and Ue 7 5"N\{0} (in
fact, p(up) = 0 but this does not matter). As U has no zero intervals in [xo, x, |, it
follows that Q, y<Z,,)(U). Then from Lemma 4.56 applied to U, we get

Qo) <Zo,)(U)<yy —t(u) — 1.

On the other hand, it is easy to see that Q, , )= —11 + Q). We now choose p,
and 71y satisfying the second condition in (13). Take p, = p*. Due to the location of
the points z; in (a,x,,] it follows easily that p* =n — 1. From Lemma 4.47, m; —
T —pt = 1<
£

) Thus, pick an integer t9o<t* such that m; —t9—p*— 1=

i.y,)- Then we have

‘]17—11—‘50—1:‘/17—11-{-1”!—1—’[0—;)*—1=—l1+Q<0,Jl).

Therefore, j; — 10— 1 =Q,,). Thus 79 >1(up), and obviously, p* = p(uy). Accord-
ingly, (13) holds with p, = p*, and 7 (and with uy in place of u). Now, as ;7 —
70— 1 =29, and T is a (y; — 10)-dimensional WT-space, using Property [JKZ]
we see that there exists a nontrivial H in that space for which Qn(0,x, ) is an

alternating set. Hence, Q@ (x,,, x, ) is also an alternating set for He .7 | = V’l’*’zo. At
this point we apply the second case in Claim 1 to obtain an /g satisfying (a)—(c) of
Theorem 4.12 for the function uj. Observe that sy =0 on (a,x]. Then it is
immediate to see that /4 also satisfies (a)—(c) of Theorem 4.12 for the function u*.
This completes the proof of Claim 2. [

Theorem 4.12 shows that ¥'nn %, satisfies Property A. From Theorem 3.3 we
therefore conclude the following result.

Uniqueness theorem. Let ¢ be a convex function defined on [0, oo), with ¢(0) = 0 and
¢(y)>0 for y>0, and also assume that ¢ satisfies Property A,. Let J denote an open
interval and let f be a continuous function in £ . Then there exists a unique go€ $n
such that

/¢<\f—go|></ $(f —gl) for every gen.
J J

Example. For J = (—o0,+00) and n=3 we will construct a uy in Sp\L; with
infinitely many isolated zeros. Applying to uy the procedure expounded in the proof
of Theorem 4.12 we will obtain an /iy e .91, also with infinitely many isolated zeros,
and with a lower right and left level than uy. We will prove that /g is in L;, which
shows the effective action of the levels. We emphasize that the proof of existence of
this kind of splines in L; is an interesting application of the theory of levels.
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Let J = (—00,+) and n =3, and let IT = {x;},.,, where x; = i for all ie Z. For
every integer i > 1, let us denote by z; the middle point of the interval [x;, x;.1], and let
z_; = —z;and zy = x. It is easy to see that the restriction of the function x? to [—1,1]
can be extended to an even function uy € %17 in such a way that the only zeros of u
are the points {z;};,., and where z is the only double zero of uy. Set Q == {z;},_,.
Then {ug,Q} is a reference pair. For each veN, let 1, :=—v—2 and j, =v+2.
Therefore, the sequences {1,},. and {J,}, . satisfy (2)~(5), and so we can apply the
theory developed in the proof of Theorem 4.12. Observe that for all veN, the
(6 + 2v)-dimensional WT-space &, coincides with .%_,_5 12, since uy(x,,)#0 and
up(x, )#0. Moreover, it is not difficult to see that there are nine WT-spaces .7},
0<t<t" =2 and 0<p<p* =2, being S0 =91 =5 35, SV =9, 97" =
Styyand 977 =90,

We claim that u, has the same right and left levels as Ug,o (=Y (1)), where 7 is in
the basis for &) introduced in Remark 4.29. Observe that ¥; is an odd spline—and
hence Ug,o as well—if we choose, as we do, a symmetric set for its seven zeros yy.
Define Ge 7 ) as G = 0 on [3,0] and G(x) = Up(x) for all xe[0, 3], where U is the
restriction of uy to [—3,3]. Since G has two sign changes, G cannot be in the 2-
dimensional WT-space .7 (]) Then ¥(G) has the same right level as vg’o, and the same
fact is valid for uy because uy = ¥(G) on [0,+ 0 ). By arguments of symmetry we
deduce that # has the same left level as vg’o, and this proves the claim.

We now see that ug¢ L;. To do this, consider the broken line ¢ defined on
(—00,4+00) in such a way that g(x) = |x| for all xe[—1,1] and ¢(z;) = 0 for every
ieZ. It is not difficult to see that |g|<|ug| on ((—oo,+0o0)\[-1,1])\Q. Then
[ |uo| = oo, since [;" |g| = 0. Thus, we conclude that ug¢ L.

We have just seen that uy has the same right and left level as vg’o and that ug¢ L.
So, in order to show the effective action of levels on W(#), our aim is now to prove
that if Hey’}’l, then W(H)eL;. As Card(Qn(-3,3)) = 5, we can apply Property
[JKZ] in the 6-dimensional WT-space }" to obtain an Hye.#;"\{0} for which
Qn(-3,3) is an alternating set. Note that Hj has no zero interval, since otherwise
either Hy or Hy(—x) would be in the 2-dimensional WT-space 7, with two sign
changes, which is not possible. Therefore, Hj has five sign changes. By the location
of the points z; we see that iy = W(H)) does not go to 0 to the right nor to the left.
We can thus apply (by) of Theorem 4.36 to Hye V%’l. It follows that the points in Q
are the only (simple) zeros of Ay. Observe that Hy is uniquely determined up to a
multiplicity constant. In particular, this implies that Hj is an odd function, and
hence A as well. We now prove the following assertion.

Assertion 1. The broken line hjy has a simple zero in each (x;,x;41), all ieZ.

From (bs) of Theorem 4.36 applied to Hoef/’}’], Iy has at least one zero in
[xi, xi11], all ie Z. From this condition and by the location of the zeros of /g, we see
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that the broken line /j, has no zero interval. Therefore, /i has exactly one zero in
each component [x;, x;41], i€ Z. Hence, to prove the assertion it remains to show that
hiy has no zero at the knots x; for any ieZ.

Suppose first that /iy has a double zero at a knot x; for some /e Z. If >0, then /),
has at most / — 2 sign changes on (xo, x;41). Therefore, applying Lemma 4.8 to the
restriction of /4 to (xg,x;+1) we obtain a contradiction, since A has / simple zeros in
[x0, X/41]. Obviously, the same argument is valid when /<0. Thus, /{, has no double
zero at the knots x; for any i#0. Finally, if /j has a double zero at xp, then it is not
difficult to see that there exists a constant A such that hy = Auy on (xo,+00) and
ho = —Jup on (—o00,Xxp). This contradicts that Hoeyi’l, since Uge,éy}’l.

Assume now that A has a simple zero at a knot x; for some i/ €Z. As hjy is an odd
function, we see that #/ #0 and that /; has also a simple zero at the knot x_;. Suppose
i’>0. Thus, for all ¢ sufficiently small the following two conditions hold:
® The broken line (4 — avg’o)/

j>i.
® The spline Ay — svg’o has at least five sign changes on (-3, 3).

has at most 2j — 2 sign changes on (x_;, x;) for every

Note that for all ¢, the spline /g — avg’o has no zero interval in (3, + o0 ). Otherwise we
would conclude that /1y — 31)8"0 = 0 on (3,+00), which is a contradiction because the
right levels of /iy and v)" are different. In the same way /iy — ev)” has no zero interval
in (—oo, —3). Take an integer »>max{7,3}. Then since (hy — avg’o)(zj) = 0 for each
j=3, using the second condition above we deduce that for all ¢ sufficiently small,
Z[zx,,.,x,.] (ho — e0)®) =5 + Card(Qn ([x_,, x,]\(=3,3)) =5+ 2r — 6. So taking into
account the first of the two conditions above and using Lemma 4.8 we get

- (ho — svg‘o) =5+ Card(Qn ([x_,, x,]\(=3,3)). We conclude that for all ¢

sufficiently small, &y — svg’o has no double zero, and
{ho — e)® =0} N (J\(=3,3)) = QN (J\(=3,3)).

On the other hand, applying (bs4) of Theorem 4.36 to Hy ef/’:’l and to Vg’o ey?’o we
deduce that /g and vy have no double zero and

{ho = 0} A (J\(3,3)) = {t§° = 0} A (J\(~3,3)) = @ (J\(~3,3)).

Accordingly, apply Lemma 4.28(c) to Ay and vg’o to deduce that Ay does not have a
lower right or left level than vg’o. This contradicts that Hoey%’l. Thus, /;, has no
simple zero at the knots x; for any ie Z, which completes the proof of the assertion.

In accordance with Assertion 1, for any integer >0 let ¢; be the simple zero of /i
in the interval (x;, X;y1).
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Assertion 2. For each integer i =0,
Zi + Xit1

7 <Ci<Xiyl-

To prove the assertion, observe first that by definition of ¢;, we have ¢; <x;y; for
each integer i>0. Recall also that the points in Q are the only (simple) zeros of /.
Without loss of generality, assume />0 on (xo, x1]. Therefore, A is decreasing in
the interval [xg, x1], since /((0) >0 and A has a simple zero ¢y in (xo, x;). Moreover,
¢o>(xo + x1)/2. Otherwise iy would have a zero in (x¢, x;]. This proves the assertion
for i = 0 because zyp = xo. As hp>0 on (xo,z;) and Ay <0 on (co, 1), we deduce that
hy <0 on (x1,z). Furthermore, /{(z,) <0, since z; is a simple zero of /. Therefore,
¢1>z1. Suppose now c¢;<(z; + x2)/2. As ho(z;) =0, we get hy(x) = f; hy, for all
x€|[z1,x5]. Then we see that hy has a zero at a point in (z1,x;], which is a
contradiction. Thus, ¢; > (z; + x2)/2. Now, as /iy <0 on (z1, z2) and /i, >0 on (c1, ¢2),
in the same manner we can see that ¢;>(z2 + x3)/2. The proof of the inequality
”%<ci now falls into a recurrent procedure, that allows us to complete the proof
of the assertion by induction on i.

From Assertion 2 with i = 0 it follows that |Aj(x1)| <|hj(x0)|, and with i =1 we
see that

[y (z0)[ <3 o ()| and  [A(x2)| <3 [ (x:)].
Therefore,
[y (1) <3 o (xo)| - and [ (x2)| <3 [ (xo)]
In general, as (z; + xj;1)/2<c¢;<xj41 for each integer j>1, we deduce that
()l <3 1o ()l and g ()| <5 17 ()]
Thus, for each integer j>1,
()] <3E) " g o) -

On the other hand, note that for each j>1, |h(z;)| > |hy(x)| for every x€zj,zj1].
Hence, for all xe(zj,zj41),

X 1\ VAR AL
i< [ El< [ 5(5) mel=5(3) Mool
Accordingly,

+0 o Zj+1 ) G+ 1 /1 J-1
[mi= [ iy [T5(5) o
z j= zj

Z1 )

1< /1, 3,
=2 (5) ol =3 ot
=1

Jj=
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In this way, taking into account that /; is an odd function, we get

+o0 —ZI1 Z + 0
/'|m=/’|m+/ WH/'IM
— o0 — o0 —ZI] ]

3, :
<3t + |

—z

1 3 ,
ol + 5 1y (xo)| < oo,
1

whence hyelL,.
Finally, applying Theorem 4.46, with Hj in place of G, we conclude that any H in

y%’l has the property that W(H) is in L;.
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